Wang Shuo, Bai Qiang, Nolan Adelaide M, Liu Yunsheng, Gong Sheng, Sun Qiang, Mo Yifei
Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China.
Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA.
Angew Chem Int Ed Engl. 2019 Jun 11;58(24):8039-8043. doi: 10.1002/anie.201901938. Epub 2019 May 15.
Enabling all-solid-state Li-ion batteries requires solid electrolytes with high Li ionic conductivity and good electrochemical stability. Following recent experimental reports of Li YCl and Li YBr as promising new solid electrolytes, we used first principles computation to investigate the Li-ion diffusion, electrochemical stability, and interface stability of chloride and bromide materials and elucidated the origin of their high ionic conductivities and good electrochemical stabilities. Chloride and bromide chemistries intrinsically exhibit low migration energy barriers, wide electrochemical windows, and are not constrained to previous design principles for sulfide and oxide Li-ion conductors, allowing for much greater freedom in structure, chemistry, composition, and Li sublattice for developing fast Li-ion conductors. Our study highlights chloride and bromide chemistries as a promising new research direction for solid electrolytes with high ionic conductivity and good stability.
实现全固态锂离子电池需要具有高锂离子传导率和良好电化学稳定性的固体电解质。继最近关于LiYCl和LiYBr作为有前景的新型固体电解质的实验报告之后,我们使用第一性原理计算来研究氯化物和溴化物材料的锂离子扩散、电化学稳定性和界面稳定性,并阐明了它们高离子传导率和良好电化学稳定性的起源。氯化物和溴化物化学本质上具有低迁移能垒、宽电化学窗口,并且不受先前硫化物和氧化物锂离子导体设计原则的限制,这使得在开发快速锂离子导体的结构、化学、组成和锂亚晶格方面有更大的自由度。我们的研究突出了氯化物和溴化物化学作为具有高离子传导率和良好稳定性的固体电解质的一个有前景的新研究方向。