Suppr超能文献

在海马体和人工网络中构建概念时进行区分示例。

Distinguishing examples while building concepts in hippocampal and artificial networks.

机构信息

Neural Circuits and Computations Unit, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.

Graduate School of Informatics, Kyoto University, 36-1 Yoshida-honmachi, Sakyo-ku, Kyoto, 606-8501, Japan.

出版信息

Nat Commun. 2024 Jan 20;15(1):647. doi: 10.1038/s41467-024-44877-0.

Abstract

The hippocampal subfield CA3 is thought to function as an auto-associative network that stores experiences as memories. Information from these experiences arrives directly from the entorhinal cortex as well as indirectly through the dentate gyrus, which performs sparsification and decorrelation. The computational purpose for these dual input pathways has not been firmly established. We model CA3 as a Hopfield-like network that stores both dense, correlated encodings and sparse, decorrelated encodings. As more memories are stored, the former merge along shared features while the latter remain distinct. We verify our model's prediction in rat CA3 place cells, which exhibit more distinct tuning during theta phases with sparser activity. Finally, we find that neural networks trained in multitask learning benefit from a loss term that promotes both correlated and decorrelated representations. Thus, the complementary encodings we have found in CA3 can provide broad computational advantages for solving complex tasks.

摘要

海马亚区 CA3 被认为是一个自联想网络,它将经验存储为记忆。这些经验的信息直接来自内嗅皮层,也间接来自齿状回,齿状回执行稀疏化和去相关。这两个输入途径的计算目的尚未得到明确证实。我们将 CA3 建模为一个类似于 Hopfield 的网络,它可以存储密集的、相关的编码和稀疏的、去相关的编码。随着更多记忆的存储,前者沿着共享特征合并,而后者保持独特。我们在大鼠 CA3 位置细胞中验证了我们模型的预测,这些细胞在 theta 相位表现出更明显的调谐,同时活动更稀疏。最后,我们发现,在多任务学习中训练的神经网络受益于一个损失项,该损失项同时促进相关和去相关的表示。因此,我们在 CA3 中发现的互补编码可以为解决复杂任务提供广泛的计算优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa28/10799871/13680c2fd961/41467_2024_44877_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验