Antony James, Liu Xiaonan L, Zheng Yicong, Ranganath Charan, O'Reilly Randall C
Department of Psychology and Child Development, California Polytechnic State University.
Department of Psychology, Chinese University of Hong Kong.
Psychol Rev. 2024 Nov;131(6):1337-1372. doi: 10.1037/rev0000488. Epub 2024 Jul 25.
Some neural representations gradually change across multiple timescales. Here we argue that modeling this "drift" could help explain the spacing effect (the long-term benefit of distributed learning), whereby differences between stored and current temporal context activity patterns produce greater error-driven learning. We trained a neurobiologically realistic model of the entorhinal cortex and hippocampus to learn paired associates alongside temporal context vectors that drifted between learning episodes and/or before final retention intervals. In line with spacing effects, greater drift led to better model recall after longer retention intervals. Dissecting model mechanisms revealed that greater drift increased error-driven learning, strengthened weights in slower drifting temporal context neurons (temporal abstraction), and improved direct cue-target associations (decontextualization). Intriguingly, these results suggest that decontextualization-generally ascribed only to the neocortex-can occur within the hippocampus itself. Altogether, our findings provide a mechanistic formalization for established learning concepts such as spacing effects and errors during learning. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
一些神经表征会在多个时间尺度上逐渐变化。在此,我们认为对这种“漂移”进行建模有助于解释间隔效应(分布式学习的长期益处),即存储的与当前时间背景活动模式之间的差异会产生更大的错误驱动学习。我们训练了一个具有神经生物学现实意义的内嗅皮层和海马体模型,使其在时间背景向量在学习阶段之间和/或在最终保留间隔之前发生漂移的情况下学习配对联想。与间隔效应一致,更大的漂移导致在更长的保留间隔后模型的回忆效果更好。剖析模型机制发现,更大的漂移增加了错误驱动学习,增强了漂移较慢的时间背景神经元中的权重(时间抽象),并改善了直接线索-目标关联(去情境化)。有趣的是,这些结果表明,通常仅归因于新皮层的去情境化也可能发生在海马体自身内部。总之,我们的研究结果为间隔效应和学习过程中的错误等既定学习概念提供了一种机制形式化。(《心理学文摘数据库记录》(c)2024美国心理学会,保留所有权利)