Suppr超能文献

混合 FHR:一种用于自动诊断胎儿酸中毒的多模态人工智能方法。

Hybrid-FHR: a multi-modal AI approach for automated fetal acidosis diagnosis.

机构信息

School of Cyberspace, Hangzhou Dianzi University, Hangzhou, China.

College of Electronics and Information Engineering, Hangzhou Dianzi University, Hangzhou, China.

出版信息

BMC Med Inform Decis Mak. 2024 Jan 22;24(1):19. doi: 10.1186/s12911-024-02423-4.

Abstract

BACKGROUND

In clinical medicine, fetal heart rate (FHR) monitoring using cardiotocography (CTG) is one of the most commonly used methods for assessing fetal acidosis. However, as the visual interpretation of CTG depends on the subjective judgment of the clinician, this has led to high inter-observer and intra-observer variability, making it necessary to introduce automated diagnostic techniques.

METHODS

In this study, we propose a computer-aided diagnostic algorithm (Hybrid-FHR) for fetal acidosis to assist physicians in making objective decisions and taking timely interventions. Hybrid-FHR uses multi-modal features, including one-dimensional FHR signals and three types of expert features designed based on prior knowledge (morphological time domain, frequency domain, and nonlinear). To extract the spatiotemporal feature representation of one-dimensional FHR signals, we designed a multi-scale squeeze and excitation temporal convolutional network (SE-TCN) backbone model based on dilated causal convolution, which can effectively capture the long-term dependence of FHR signals by expanding the receptive field of each layer's convolution kernel while maintaining a relatively small parameter size. In addition, we proposed a cross-modal feature fusion (CMFF) method that uses multi-head attention mechanisms to explore the relationships between different modalities, obtaining more informative feature representations and improving diagnostic accuracy.

RESULTS

Our ablation experiments show that the Hybrid-FHR outperforms traditional previous methods, with average accuracy, specificity, sensitivity, precision, and F1 score of 96.8, 97.5, 96, 97.5, and 96.7%, respectively.

CONCLUSIONS

Our algorithm enables automated CTG analysis, assisting healthcare professionals in the early identification of fetal acidosis and the prompt implementation of interventions.

摘要

背景

在临床医学中,胎心监护(CTG)是评估胎儿酸中毒最常用的方法之一。然而,由于 CTG 的视觉解释依赖于临床医生的主观判断,这导致了观察者间和观察者内的高度变异性,因此需要引入自动化诊断技术。

方法

在这项研究中,我们提出了一种用于胎儿酸中毒的计算机辅助诊断算法(Hybrid-FHR),以帮助医生做出客观决策并及时进行干预。Hybrid-FHR 使用多模态特征,包括一维胎心信号和基于先验知识设计的三种专家特征(形态时域、频域和非线性)。为了提取一维胎心信号的时空特征表示,我们设计了一种基于扩张因果卷积的多尺度挤压激励时间卷积网络(SE-TCN)骨干模型,该模型通过扩展每个层卷积核的感受野,同时保持相对较小的参数大小,有效地捕获胎心信号的长期依赖关系。此外,我们提出了一种跨模态特征融合(CMFF)方法,使用多头注意力机制来探索不同模态之间的关系,从而获得更具信息量的特征表示,并提高诊断准确性。

结果

我们的消融实验表明,Hybrid-FHR 优于传统的先前方法,平均准确率、特异性、灵敏度、精度和 F1 分数分别为 96.8%、97.5%、96%、97.5%和 96.7%。

结论

我们的算法实现了 CTG 的自动化分析,帮助医疗保健专业人员早期识别胎儿酸中毒并及时进行干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b305/10801938/8786e3264a11/12911_2024_2423_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验