Feijoo-Coronel Marcia L, Mendes Bruno, Ramírez David, Peña-Varas Carlos, de Los Monteros-Silva Nina Q E, Proaño-Bolaños Carolina, de Oliveira Leonardo Camilo, Lívio Diego Fernandes, da Silva José Antônio, da Silva José Maurício S F, Pereira Marília Gabriella A G, Rodrigues Marina Q R B, Teixeira Mauro M, Granjeiro Paulo Afonso, Patel Ketan, Vaiyapuri Sakthivel, Almeida José R
Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 7 Via Muyuna, Tena 150101, Ecuador.
Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile.
Antibiotics (Basel). 2024 Jan 14;13(1):78. doi: 10.3390/antibiotics13010078.
Antimicrobial peptides have been developed based on plant-derived molecular scaffolds for the treatment of infectious diseases. Chenopodin is an abundant seed storage protein in quinoa, an Andean plant with high nutritional and therapeutic properties. Here, we used computer- and physicochemical-based strategies and designed four peptides derived from the primary structure of Chenopodin. Two peptides reproduce natural fragments of 14 amino acids from Chenopodin, named Chen1 and Chen2, and two engineered peptides of the same length were designed based on the Chen1 sequence. The two amino acids of Chen1 containing amide side chains were replaced by arginine (ChenR) or tryptophan (ChenW) to generate engineered cationic and hydrophobic peptides. The evaluation of these 14-mer peptides on and showed that Chen1 does not have antibacterial activity up to 512 µM against these strains, while other peptides exhibited antibacterial effects at lower concentrations. The chemical substitutions of glutamine and asparagine by amino acids with cationic or aromatic side chains significantly favoured their antibacterial effects. These peptides did not show significant hemolytic activity. The fluorescence microscopy analysis highlighted the membranolytic nature of Chenopodin-derived peptides. Using molecular dynamic simulations, we found that a pore is formed when multiple peptides are assembled in the membrane. Whereas, some of them form secondary structures when interacting with the membrane, allowing water translocations during the simulations. Finally, Chen2 and ChenR significantly reduced SARS-CoV-2 infection. These findings demonstrate that Chenopodin is a highly useful template for the design, engineering, and manufacturing of non-toxic, antibacterial, and antiviral peptides.
基于植物来源的分子支架开发了抗菌肽用于治疗传染病。藜豆蛋白是藜麦中一种丰富的种子储存蛋白,藜麦是一种具有高营养和治疗特性的安第斯植物。在此,我们采用基于计算机和物理化学的策略,从藜豆蛋白的一级结构设计了四种肽。两种肽重现了藜豆蛋白14个氨基酸的天然片段,命名为Chen1和Chen2,另外两种相同长度的工程肽基于Chen1序列设计。将Chen1中含有酰胺侧链的两个氨基酸替换为精氨酸(ChenR)或色氨酸(ChenW),以生成工程化的阳离子和疏水肽。对这些14肽对[具体菌株]和[具体菌株]的评估表明,Chen1在高达512µM的浓度下对这些菌株没有抗菌活性,而其他肽在较低浓度下表现出抗菌作用。用具有阳离子或芳香侧链的氨基酸对谷氨酰胺和天冬酰胺进行化学取代显著增强了它们的抗菌作用。这些肽没有显示出明显的溶血活性。荧光显微镜分析突出了藜豆蛋白衍生肽的膜溶解性质。通过分子动力学模拟,我们发现当多个肽在膜中组装时会形成一个孔。然而,其中一些肽在与膜相互作用时会形成二级结构,在模拟过程中允许水的转运。最后,Chen2和ChenR显著降低了SARS-CoV-2感染。这些发现表明,藜豆蛋白是设计、工程化和制造无毒、抗菌和抗病毒肽的非常有用的模板。