Guo Yiran, Leng Yuxin, Gao Chengjin
Department of Emergency, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
Critical Care Medicine Department, Peking University Third Hospital, Beijing 100191, China.
Bioengineering (Basel). 2024 Jan 2;11(1):49. doi: 10.3390/bioengineering11010049.
Traumatic brain injury (TBI), a major global health burden, disrupts the neurological system due to accidents and other incidents. While the Glasgow coma scale (GCS) gauges neurological function, it falls short as the sole predictor of overall mortality in TBI patients. This highlights the need for comprehensive outcome prediction, considering not just neurological but also systemic factors. Existing approaches relying on newly developed biomolecules face challenges in clinical implementation. Therefore, we investigated the potential of readily available clinical indicators, like the blood urea nitrogen-to-albumin ratio (BAR), for improved mortality prediction in TBI. In this study, we investigated the significance of the BAR in predicting all-cause mortality in TBI patients. In terms of research methodologies, we gave preference to machine learning methods due to their exceptional performance in clinical support in recent years. Initially, we obtained data on TBI patients from the Medical Information Mart for Intensive Care database. A total of 2602 patients were included, of whom 2260 survived and 342 died in hospital. Subsequently, we performed data cleaning and utilized machine learning techniques to develop prediction models. We employed a ten-fold cross-validation method to obtain models with enhanced accuracy and area under the curve (AUC) (Light Gradient Boost Classifier accuracy, 0.905 ± 0.016, and AUC, 0.888; Extreme Gradient Boost Classifier accuracy, 0.903 ± 0.016, and AUC, 0.895; Gradient Boost Classifier accuracy, 0.898 ± 0.021, and AUC, 0.872). Simultaneously, we derived the importance ranking of the variable BAR among the included variables (in Light Gradient Boost Classifier, the BAR ranked fourth; in Extreme Gradient Boost Classifier, the BAR ranked sixth; in Gradient Boost Classifier, the BAR ranked fifth). To further evaluate the clinical utility of BAR, we divided patients into three groups based on their BAR values: Group 1 (BAR < 4.9 mg/g), Group 2 (BAR ≥ 4.9 and ≤10.5 mg/g), and Group 3 (BAR ≥ 10.5 mg/g). This stratification revealed significant differences in mortality across all time points: in-hospital mortality (7.61% vs. 15.16% vs. 31.63%), as well as one-month (8.51% vs. 17.46% vs. 36.39%), three-month (9.55% vs. 20.14% vs. 41.84%), and one-year mortality (11.57% vs. 23.76% vs. 46.60%). Building on this observation, we employed the Cox proportional hazards regression model to assess the impact of BAR segmentation on survival. Compared to Group 1, Groups 2 and 3 had significantly higher hazard ratios (95% confidence interval (CI)) for one-month mortality: 1.77 (1.37-2.30) and 3.17 (2.17-4.62), respectively. To further underscore the clinical potential of BAR as a standalone measure, we compared its performance to established clinical scores, like sequential organ failure assessment (SOFA), GCS, and acute physiology score III(APS-III), using receiver operator characteristic curve (ROC) analysis. Notably, the AUC values (95%CI) of the BAR were 0.67 (0.64-0.70), 0.68 (0.65-0.70), and 0.68 (0.65-0.70) for one-month mortality, three-month mortality, and one-year mortality. The AUC value of the SOFA did not significantly differ from that of the BAR. In conclusion, the BAR is a highly influential factor in predicting mortality in TBI patients and should be given careful consideration in future TBI prediction research. The blood urea nitrogen-to-albumin ratio may predict mortality in TBI patients.
创伤性脑损伤(TBI)是一项重大的全球健康负担,因事故及其他事件导致神经系统受损。虽然格拉斯哥昏迷量表(GCS)用于评估神经功能,但作为TBI患者全因死亡率的唯一预测指标存在不足。这凸显了进行综合预后预测的必要性,不仅要考虑神经因素,还要考虑全身因素。现有的依赖新开发生物分子的方法在临床应用中面临挑战。因此,我们研究了诸如血尿素氮与白蛋白比值(BAR)等现成临床指标在改善TBI死亡率预测方面的潜力。在本研究中,我们调查了BAR在预测TBI患者全因死亡率中的意义。在研究方法上,由于机器学习方法近年来在临床支持方面表现出色,我们优先选择了这些方法。最初,我们从重症监护医学信息数据库获取了TBI患者的数据。共纳入2602例患者,其中2260例存活,342例在医院死亡。随后,我们进行了数据清理,并利用机器学习技术开发预测模型。我们采用十折交叉验证方法来获得具有更高准确性和曲线下面积(AUC)的模型(轻梯度提升分类器准确率为0.905±0.016,AUC为0.888;极端梯度提升分类器准确率为0.903±0.016,AUC为0.895;梯度提升分类器准确率为0.898±0.021,AUC为0.872)。同时,我们得出了变量BAR在所纳入变量中的重要性排名(在轻梯度提升分类器中,BAR排名第四;在极端梯度提升分类器中,BAR排名第六;在梯度提升分类器中,BAR排名第五)。为了进一步评估BAR的临床实用性,我们根据患者的BAR值将其分为三组:第1组(BAR<4.9mg/g)、第2组(BAR≥4.9且≤10.5mg/g)和第3组(BAR≥10.5mg/g)。这种分层显示在所有时间点的死亡率存在显著差异:住院死亡率(7.61%对15.16%对31.63%),以及1个月(8.51%对17.46%对36.39%)、3个月(9.55%对20.14%对41.84%)和1年死亡率(11.57%对23.76%对46.60%)。基于这一观察结果,我们采用Cox比例风险回归模型来评估BAR分层对生存的影响。与第1组相比,第2组和第3组1个月死亡率的风险比(95%置信区间(CI))显著更高:分别为1.77(1.37 - 2.30)和3.17(2.17 - 4.62)。为了进一步强调BAR作为独立指标的临床潜力,我们使用受试者工作特征曲线(ROC)分析将其性能与既定的临床评分进行比较,如序贯器官衰竭评估(SOFA)、GCS和急性生理评分III(APS - III)。值得注意的是,BAR在1个月死亡率、3个月死亡率和1年死亡率方面的AUC值(95%CI)分别为0.67(0.64 - 0.70)、0.68(0.65 - 0.70)和0.68(0.65 - 0.70)。SOFA的AUC值与BAR的AUC值无显著差异。总之,BAR是预测TBI患者死亡率的一个极具影响力的因素,在未来的TBI预测研究中应予以充分考虑。血尿素氮与白蛋白比值可能预测TBI患者的死亡率。