文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于预测脓毒症相关性肝损伤患者 28 天死亡率的可解释机器学习模型。

An interpretable machine learning model for predicting 28-day mortality in patients with sepsis-associated liver injury.

机构信息

Department of Intensive Care Medicine, Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China.

Luzhou Key Laboratory of Human Microecology and Precision Diagnosis and Treatment, Luzhou, China.

出版信息

PLoS One. 2024 May 20;19(5):e0303469. doi: 10.1371/journal.pone.0303469. eCollection 2024.


DOI:10.1371/journal.pone.0303469
PMID:38768153
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11104601/
Abstract

Sepsis-Associated Liver Injury (SALI) is an independent risk factor for death from sepsis. The aim of this study was to develop an interpretable machine learning model for early prediction of 28-day mortality in patients with SALI. Data from the Medical Information Mart for Intensive Care (MIMIC-IV, v2.2, MIMIC-III, v1.4) were used in this study. The study cohort from MIMIC-IV was randomized to the training set (0.7) and the internal validation set (0.3), with MIMIC-III (2001 to 2008) as external validation. The features with more than 20% missing values were deleted and the remaining features were multiple interpolated. Lasso-CV that lasso linear model with iterative fitting along a regularization path in which the best model is selected by cross-validation was used to select important features for model development. Eight machine learning models including Random Forest (RF), Logistic Regression, Decision Tree, Extreme Gradient Boost (XGBoost), K Nearest Neighbor, Support Vector Machine, Generalized Linear Models in which the best model is selected by cross-validation (CV_glmnet), and Linear Discriminant Analysis (LDA) were developed. Shapley additive interpretation (SHAP) was used to improve the interpretability of the optimal model. At last, a total of 1043 patients were included, of whom 710 were from MIMIC-IV and 333 from MIMIC-III. Twenty-four clinically relevant parameters were selected for model construction. For the prediction of 28-day mortality of SALI in the internal validation set, the area under the curve (AUC (95% CI)) of RF was 0.79 (95% CI: 0.73-0.86), and which performed the best. Compared with the traditional disease severity scores including Oxford Acute Severity of Illness Score (OASIS), Sequential Organ Failure Assessment (SOFA), Simplified Acute Physiology Score II (SAPS II), Logistic Organ Dysfunction Score (LODS), Systemic Inflammatory Response Syndrome (SIRS), and Acute Physiology Score III (APS III), RF also had the best performance. SHAP analysis found that Urine output, Charlson Comorbidity Index (CCI), minimal Glasgow Coma Scale (GCS_min), blood urea nitrogen (BUN) and admission_age were the five most important features affecting RF model. Therefore, RF has good predictive ability for 28-day mortality prediction in SALI. Urine output, CCI, GCS_min, BUN and age at admission(admission_age) within 24 h after intensive care unit(ICU) admission contribute significantly to model prediction.

摘要

脓毒症相关性肝损伤 (SALI) 是脓毒症死亡的独立危险因素。本研究旨在开发一种可解释的机器学习模型,用于早期预测 SALI 患者 28 天死亡率。本研究使用了来自医疗信息集市重症监护 (MIMIC-IV,v2.2,MIMIC-III,v1.4) 的数据。MIMIC-IV 中的研究队列被随机分配到训练集 (0.7) 和内部验证集 (0.3),MIMIC-III (2001 年至 2008 年) 作为外部验证。删除缺失值超过 20%的特征,并对剩余特征进行多次内插。使用 Lasso-CV 选择重要特征进行模型开发,Lasso-CV 是一种通过沿着正则化路径进行迭代拟合的lasso 线性模型,通过交叉验证选择最佳模型。共开发了 8 种机器学习模型,包括随机森林 (RF)、逻辑回归、决策树、极端梯度提升 (XGBoost)、K 最近邻、支持向量机、广义线性模型,其中最佳模型通过交叉验证 (CV_glmnet) 选择,以及线性判别分析 (LDA)。Shapley 加法解释 (SHAP) 用于提高最优模型的可解释性。最后,共纳入 1043 例患者,其中 710 例来自 MIMIC-IV,333 例来自 MIMIC-III。选择了 24 个临床相关参数进行模型构建。在内部验证集中,RF 的曲线下面积 (AUC(95%CI)) 为 0.79(95%CI:0.73-0.86),表现最佳。与传统的疾病严重程度评分包括牛津急性疾病严重程度评分 (OASIS)、序贯器官衰竭评估 (SOFA)、简化急性生理学评分 II (SAPS II)、逻辑器官功能障碍评分 (LODS)、全身炎症反应综合征 (SIRS) 和急性生理学评分 III (APS III) 相比,RF 也具有最佳性能。SHAP 分析发现,尿量、Charlson 合并症指数 (CCI)、最小格拉斯哥昏迷量表 (GCS_min)、血尿素氮 (BUN) 和入院年龄是影响 RF 模型的五个最重要的特征。因此,RF 对 SALI 患者 28 天死亡率预测具有良好的预测能力。重症监护病房 (ICU) 入院后 24 小时内的尿量、CCI、GCS_min、BUN 和入院年龄(入院年龄)对模型预测有显著贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5288/11104601/35fd41fc71b6/pone.0303469.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5288/11104601/47b7258d10c0/pone.0303469.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5288/11104601/b6c74465e002/pone.0303469.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5288/11104601/c1361a87e8d0/pone.0303469.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5288/11104601/f6ca924658aa/pone.0303469.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5288/11104601/e1ad137ad513/pone.0303469.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5288/11104601/734b24bbc839/pone.0303469.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5288/11104601/35fd41fc71b6/pone.0303469.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5288/11104601/47b7258d10c0/pone.0303469.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5288/11104601/b6c74465e002/pone.0303469.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5288/11104601/c1361a87e8d0/pone.0303469.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5288/11104601/f6ca924658aa/pone.0303469.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5288/11104601/e1ad137ad513/pone.0303469.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5288/11104601/734b24bbc839/pone.0303469.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5288/11104601/35fd41fc71b6/pone.0303469.g007.jpg

相似文献

[1]
An interpretable machine learning model for predicting 28-day mortality in patients with sepsis-associated liver injury.

PLoS One. 2024

[2]
[Constructing a predictive model for the death risk of patients with septic shock based on supervised machine learning algorithms].

Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2024-4

[3]
[Construction of a predictive model for in-hospital mortality of sepsis patients in intensive care unit based on machine learning].

Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2023-7

[4]
Interpretable machine learning model for early prediction of 28-day mortality in ICU patients with sepsis-induced coagulopathy: development and validation.

Eur J Med Res. 2024-1-3

[5]
Construction and validation of machine learning models for sepsis prediction in patients with acute pancreatitis.

BMC Surg. 2023-9-1

[6]
[Development and validation of a nomogram for predicting 3-month mortality risk in patients with sepsis-associated acute kidney injury].

Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2024-5

[7]
[Predictive value of six critical illness scores for 28-day death risk in comprehensive and specialized intensive care unit patients based on MIMIC-IV database].

Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2022-7

[8]
Prediction of acute kidney injury in patients with liver cirrhosis using machine learning models: evidence from the MIMIC-III and MIMIC-IV.

Int Urol Nephrol. 2024-1

[9]
[Development and validation of a prognostic model for patients with sepsis in intensive care unit].

Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2023-8

[10]
Predicting sepsis in-hospital mortality with machine learning: a multi-center study using clinical and inflammatory biomarkers.

Eur J Med Res. 2024-3-6

引用本文的文献

[1]
Prognostic value of albumin-corrected anion gap in critically ill patients with sepsis-associated liver injury: a retrospective study.

BMC Infect Dis. 2025-7-19

[2]
Dimethyl fumarate attenuates liver injury in a mouse model of cecal ligation and puncture by modulating inflammatory, angiogenic and pyroptotic pathways.

BMC Pharmacol Toxicol. 2025-7-17

[3]
METTL3-mediated m6A modification in sepsis: current evidence and future perspectives.

Epigenomics. 2025-6

[4]
Aspirin is associated with improved 30-day mortality in patients with sepsis-associated liver injury: a retrospective cohort study based on MIMIC IV database.

Front Pharmacol. 2025-3-4

[5]
An interpretable machine learning model for predicting in-hospital mortality in ICU patients with ventilator-associated pneumonia.

PLoS One. 2025-1-7

[6]
Association between red cell distribution width and 30-day mortality in patients with sepsis-associated liver injury: a retrospective cohort study.

Front Med (Lausanne). 2024-12-18

本文引用的文献

[1]
Development and Validation of a Rapid and Efficient Prognostic Scoring System for Sepsis Based on Oxygenation Index, Lactate and Glasgow Coma Scale.

J Inflamm Res. 2023-7-18

[2]
Patient characteristics in sepsis-related deaths: prevalence of advanced frailty, comorbidity, and age in a Norwegian hospital trust.

Infection. 2023-8

[3]
Development of a nomogram for predicting 90-day mortality in patients with sepsis-associated liver injury.

Sci Rep. 2023-3-4

[4]
Hybrid XGBoost model with hyperparameter tuning for prediction of liver disease with better accuracy.

World J Gastroenterol. 2022-12-14

[5]
Interpretable machine learning for 28-day all-cause in-hospital mortality prediction in critically ill patients with heart failure combined with hypertension: A retrospective cohort study based on medical information mart for intensive care database-IV and eICU databases.

Front Cardiovasc Med. 2022-10-12

[6]
Development and validation of a predictive model for in-hospital mortality in patients with sepsis-associated liver injury.

Ann Transl Med. 2022-9

[7]
The gut-liver axis in sepsis: interaction mechanisms and therapeutic potential.

Crit Care. 2022-7-13

[8]
Charlson Comorbidity Index: A Critical Review of Clinimetric Properties.

Psychother Psychosom. 2022

[9]
Population-Based Hyperparameter Tuning With Multitask Collaboration.

IEEE Trans Neural Netw Learn Syst. 2023-9

[10]
Association Between Urine Output and Mortality in Critically Ill Patients: A Machine Learning Approach.

Crit Care Med. 2022-3-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索