Okumura Naoki, Nishikawa Takeru, Imafuku Chiaki, Matsuoka Yuki, Miyawaki Yuna, Kadowaki Shinichi, Nakahara Makiko, Matsuoka Yasushi, Koizumi Noriko
Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe-City 610-0394, Kyoto, Japan.
ActualEyes Inc., D-egg, 1 Jizodani, Koudo, Kyotanabe-City 610-0332, Kyoto, Japan.
Bioengineering (Basel). 2024 Jan 11;11(1):71. doi: 10.3390/bioengineering11010071.
Corneal endothelial decompensation is treated by the corneal transplantation of donor corneas, but donor shortages and other problems associated with corneal transplantation have prompted investigations into tissue engineering therapies. For clinical use, cells used in tissue engineering must undergo strict quality control to ensure their safety and efficacy. In addition, efficient cell manufacturing processes are needed to make cell therapy a sustainable standard procedure with an acceptable economic burden. In this study, we obtained 3098 phase contrast images of cultured human corneal endothelial cells (HCECs). We labeled the images using semi-supervised learning and then trained a model that predicted the cell centers with a precision of 95.1%, a recall of 92.3%, and an F-value of 93.4%. The cell density calculated by the model showed a very strong correlation with the ground truth (Pearson's correlation coefficient = 0.97, value = 8.10 × 10). The total cell numbers calculated by our model based on phase contrast images were close to the numbers calculated using a hemocytometer through passages 1 to 4. Our findings confirm the feasibility of using artificial intelligence-assisted quality control assessments in the field of regenerative medicine.
角膜内皮失代偿通过供体角膜移植进行治疗,但供体短缺以及与角膜移植相关的其他问题促使人们对组织工程疗法展开研究。对于临床应用而言,组织工程中使用的细胞必须经过严格的质量控制,以确保其安全性和有效性。此外,需要高效的细胞制造工艺,以使细胞疗法成为具有可接受经济负担的可持续标准程序。在本研究中,我们获取了3098张培养的人角膜内皮细胞(HCEC)的相差图像。我们使用半监督学习对图像进行标记,然后训练了一个模型,该模型预测细胞中心的精度为95.1%,召回率为92.3%,F值为93.4%。由该模型计算出的细胞密度与真实值显示出非常强的相关性(皮尔逊相关系数 = 0.97, 值 = 8.10 × 10)。我们的模型基于相差图像计算出的总细胞数在第1至4代时接近使用血细胞计数器计算出的数量。我们的研究结果证实了在再生医学领域使用人工智能辅助质量控制评估的可行性。