Suppr超能文献

使用 U-Net 架构对大量“真实世界”共焦显微镜图像中的角膜内皮进行自动分割。

Automated segmentation of the corneal endothelium in a large set of 'real-world' specular microscopy images using the U-Net architecture.

机构信息

Eye Center, Medical Center, University of Freiburg, Freiburg, Germany.

Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands.

出版信息

Sci Rep. 2019 Mar 18;9(1):4752. doi: 10.1038/s41598-019-41034-2.

Abstract

Monitoring the density of corneal endothelial cells (CEC) is essential in the management of corneal diseases. Its manual calculation is time consuming and prone to errors. U-Net, a neural network for biomedical image segmentation, has shown promising results in the automated segmentation of images of healthy corneas and good quality. The purpose of this study was to assess its performance in "real-world" CEC images (variable quality, different ophthalmologic diseases). The outcome measures were: precision and recall of the extraction of CEC, correctness of CEC density estimation, detection of ungradable images. A classical approach based on grayscale morphology and water shedding was pursued for comparison. There was good agreement between the automated image analysis and the manual annotation from the U-Net. R-square from Pearson's correlation was 0.96. Recall of CEC averaged 0.34 and precision 0.84. The U-Net correctly predicted the CEC density in a large set of images of healthy and diseased corneas, including images of poor quality. It robustly ignored image regions with poor visibility of CEC. The classical approach, however, did not provide acceptable results. R-square from Pearson's correlation with the ground truth was as low as 0.35.

摘要

监测角膜内皮细胞(CEC)的密度对于角膜疾病的治疗至关重要。手动计算既耗时又容易出错。U-Net 是一种用于生物医学图像分割的神经网络,它在健康角膜和高质量图像的自动分割方面取得了很好的效果。本研究旨在评估其在“真实世界”CEC 图像(质量可变,不同的眼科疾病)中的性能。评估指标包括:CEC 提取的精确率和召回率、CEC 密度估计的正确性、不可分级图像的检测。还进行了基于灰度形态学和水分离的经典方法的比较。自动化图像分析与 U-Net 的手动标注之间具有很好的一致性。Pearson 相关系数的 R 方为 0.96。CEC 的召回率平均为 0.34,精确率为 0.84。U-Net 可以正确预测健康和患病角膜的大量图像中的 CEC 密度,包括质量较差的图像。它可以稳健地忽略 CEC 可见度较差的图像区域。然而,经典方法的结果并不理想。Pearson 相关系数与真实值的 R 方低至 0.35。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4567/6426887/60a6ce08ff93/41598_2019_41034_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验