Suppr超能文献

基于高斯过程的数据驱动式产程洞察

Data-Driven Insights into Labor Progression with Gaussian Processes.

作者信息

Zhoroev Tilekbek, Hamilton Emily F, Warrick Philip A

机构信息

Medical Research and Development, PeriGen Inc., Cary, NC 27518, USA.

Department of Applied Mathematics, North Carolina State University, Raleigh, NC 27606, USA.

出版信息

Bioengineering (Basel). 2024 Jan 11;11(1):0. doi: 10.3390/bioengineering11010073.

Abstract

Clinicians routinely perform pelvic examinations to assess the progress of labor. Clinical guidelines to interpret these examinations, using time-based models of cervical dilation, are not always followed and have not contributed to reducing cesarean-section rates. We present a novel Gaussian process model of labor progress, suitable for real-time use, that predicts cervical dilation and fetal station based on clinically relevant predictors available from the pelvic exam and cardiotocography. We show that the model is more accurate than a statistical approach using a mixed-effects model. In addition, it provides confidence estimates on the prediction, calibrated to the specific delivery. Finally, we show that predicting both dilation and station with a single Gaussian process model is more accurate than two separate models with single predictions.

摘要

临床医生通常会进行盆腔检查以评估产程进展。使用基于时间的宫颈扩张模型来解释这些检查结果的临床指南并非总能得到遵循,且对降低剖宫产率并无帮助。我们提出了一种适用于实时使用的新型产程进展高斯过程模型,该模型基于盆腔检查和胎心监护中可获得的临床相关预测指标来预测宫颈扩张和胎儿先露部位。我们表明,该模型比使用混合效应模型的统计方法更准确。此外,它还能针对特定分娩提供预测的置信度估计。最后,我们表明,用单一高斯过程模型同时预测扩张和先露部位比两个单独进行单一预测的模型更准确。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9c6/11154427/de30756ae7a2/bioengineering-11-00073-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验