Suppr超能文献

具有阿利效应和捕食者捕获的扩散比率依赖型捕食-食饵模型中的 Turing-Hopf 分岔分析

Turing-Hopf Bifurcation Analysis in a Diffusive Ratio-Dependent Predator-Prey Model with Allee Effect and Predator Harvesting.

作者信息

Chen Meiyao, Xu Yingting, Zhao Jiantao, Wei Xin

机构信息

Ecological Restoration and Resource Utilization for Cold Region, School of Mathematical Science, Heilongjiang University, Harbin 150080, China.

出版信息

Entropy (Basel). 2023 Dec 22;26(1):18. doi: 10.3390/e26010018.

Abstract

This paper investigates the complex dynamics of a ratio-dependent predator-prey model incorporating the Allee effect in prey and predator harvesting. To explore the joint effect of the harvesting effort and diffusion on the dynamics of the system, we perform the following analyses: (a) The stability of non-negative constant steady states; (b) The sufficient conditions for the occurrence of a Hopf bifurcation, Turing bifurcation, and Turing-Hopf bifurcation; (c) The derivation of the normal form near the Turing-Hopf singularity. Moreover, we provide numerical simulations to illustrate the theoretical results. The results demonstrate that the small change in harvesting effort and the ratio of the diffusion coefficients will destabilize the constant steady states and lead to the complex spatiotemporal behaviors, including homogeneous and inhomogeneous periodic solutions and nonconstant steady states. Moreover, the numerical simulations coincide with our theoretical results.

摘要

本文研究了一个在猎物和捕食者收获中纳入阿利效应的比率依赖型捕食者 - 猎物模型的复杂动态。为了探究收获努力和扩散对系统动态的联合影响,我们进行以下分析:(a) 非负常数稳态的稳定性;(b) 霍普夫分岔、图灵分岔和图灵 - 霍普夫分岔发生的充分条件;(c) 图灵 - 霍普夫奇点附近的范式推导。此外,我们提供数值模拟以说明理论结果。结果表明,收获努力的微小变化以及扩散系数的比率会使常数稳态不稳定,并导致复杂的时空行为,包括均匀和非均匀周期解以及非常数稳态。而且,数值模拟与我们的理论结果一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd08/10814816/02a185e664ff/entropy-26-00018-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验