Caselli Nicolás, Soto Ricardo, Crawford Broderick, Valdivia Sergio, Chicata Elizabeth, Olivares Rodrigo
Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile.
Departamento de Tecnologías de Información y Comunicación, Universidad de Valparaíso, Valparaíso 2361864, Chile.
Biomimetics (Basel). 2023 Dec 25;9(1):0. doi: 10.3390/biomimetics9010007.
In the optimization field, the ability to efficiently tackle complex and high-dimensional problems remains a persistent challenge. Metaheuristic algorithms, with a particular emphasis on their autonomous variants, are emerging as promising tools to overcome this challenge. The term "autonomous" refers to these variants' ability to dynamically adjust certain parameters based on their own outcomes, without external intervention. The objective is to leverage the advantages and characteristics of an unsupervised machine learning clustering technique to configure the population parameter with autonomous behavior, and emphasize how we incorporate the characteristics of search space clustering to enhance the intensification and diversification of the metaheuristic. This allows dynamic adjustments based on its own outcomes, whether by increasing or decreasing the population in response to the need for diversification or intensification of solutions. In this manner, it aims to imbue the metaheuristic with features for a broader search of solutions that can yield superior results. This study provides an in-depth examination of autonomous metaheuristic algorithms, including Autonomous Particle Swarm Optimization, Autonomous Cuckoo Search Algorithm, and Autonomous Bat Algorithm. We submit these algorithms to a thorough evaluation against their original counterparts using high-density functions from the well-known CEC LSGO benchmark suite. Quantitative results revealed performance enhancements in the autonomous versions, with Autonomous Particle Swarm Optimization consistently outperforming its peers in achieving optimal minimum values. Autonomous Cuckoo Search Algorithm and Autonomous Bat Algorithm also demonstrated noteworthy advancements over their traditional counterparts. A salient feature of these algorithms is the continuous nature of their population, which significantly bolsters their capability to navigate complex and high-dimensional search spaces. However, like all methodologies, there were challenges in ensuring consistent performance across all test scenarios. The intrinsic adaptability and autonomous decision making embedded within these algorithms herald a new era of optimization tools suited for complex real-world challenges. In sum, this research accentuates the potential of autonomous metaheuristics in the optimization arena, laying the groundwork for their expanded application across diverse challenges and domains. We recommend further explorations and adaptations of these autonomous algorithms to fully harness their potential.
在优化领域,有效解决复杂和高维问题的能力仍然是一个长期存在的挑战。元启发式算法,特别是其自主变体,正成为克服这一挑战的有前途的工具。“自主”一词指的是这些变体能够根据自身结果动态调整某些参数,而无需外部干预。目标是利用无监督机器学习聚类技术的优势和特点来配置具有自主行为的种群参数,并强调我们如何融入搜索空间聚类的特点以增强元启发式算法的强化和多样化。这允许根据自身结果进行动态调整,无论是通过增加还是减少种群数量来响应解决方案多样化或强化的需求。通过这种方式,旨在赋予元启发式算法更广泛搜索解决方案的特性,从而产生更优结果。本研究深入探讨了自主元启发式算法,包括自主粒子群优化算法、自主布谷鸟搜索算法和自主蝙蝠算法。我们使用来自著名的CEC LSGO基准测试套件的高密度函数,将这些算法与其原始版本进行了全面评估。定量结果显示自主版本的性能有所提升,自主粒子群优化算法在实现最优最小值方面始终优于同类算法。自主布谷鸟搜索算法和自主蝙蝠算法也比其传统对应算法有显著进步。这些算法的一个显著特点是其种群的连续性,这极大地增强了它们在复杂和高维搜索空间中导航的能力。然而,与所有方法一样,在确保所有测试场景下性能一致方面存在挑战。这些算法中内在的适应性和自主决策预示着适用于复杂现实世界挑战的优化工具的新时代。总之,本研究强调了自主元启发式算法在优化领域的潜力,为其在各种挑战和领域的广泛应用奠定了基础。我们建议进一步探索和调整这些自主算法,以充分发挥其潜力。