Myszkowski Nils, Storme Martin
Department of Psychology, Pace University, New York, NY 10004, USA.
IESEG School of Management, Univ. Lille, CNRS, UMR 9221 - LEM - Lille Économie Management, 59000 Lille, France.
J Intell. 2024 Jan 15;12(1):7. doi: 10.3390/jintelligence12010007.
Measurement models traditionally make the assumption that item responses are independent from one another, conditional upon the common factor. They typically explore for violations of this assumption using various methods, but rarely do they account for the possibility that an item predicts the next. Extending the development of auto-regressive models in the context of personality and judgment tests, we propose to extend binary item response models-using, as an example, the 2-parameter logistic (2PL) model-to include auto-regressive sequential dependencies. We motivate such models and illustrate them in the context of a publicly available progressive matrices dataset. We find an auto-regressive lag-1 2PL model to outperform a traditional 2PL model in fit as well as to provide more conservative discrimination parameters and standard errors. We conclude that sequential effects are likely overlooked in the context of cognitive ability testing in general and progressive matrices tests in particular. We discuss extensions, notably models with multiple lag effects and variable lag effects.
传统的测量模型假定,在共同因素的条件下,项目反应彼此独立。它们通常使用各种方法来探究这一假设是否被违反,但很少考虑一个项目预测下一个项目的可能性。在人格和判断测试的背景下扩展自回归模型的发展,我们建议扩展二元项目反应模型——例如,使用双参数逻辑斯蒂(2PL)模型——以纳入自回归顺序依赖性。我们对这类模型进行了论证,并在一个公开可用的渐进矩阵数据集的背景下对其进行了说明。我们发现,自回归滞后1的2PL模型在拟合度上优于传统的2PL模型,并且能提供更保守的区分参数和标准误差。我们得出结论,在一般的认知能力测试尤其是渐进矩阵测试中,顺序效应可能被忽视了。我们讨论了扩展内容,特别是具有多个滞后效应和可变滞后效应的模型。