Suppr超能文献

探索性图分析和传统技术识别潜在因素数量的性能研究:模拟与教程。

Investigating the performance of exploratory graph analysis and traditional techniques to identify the number of latent factors: A simulation and tutorial.

机构信息

Department of Psychology.

Department of Ageing and Life Course.

出版信息

Psychol Methods. 2020 Jun;25(3):292-320. doi: 10.1037/met0000255. Epub 2020 Mar 19.

Abstract

Exploratory graph analysis (EGA) is a new technique that was recently proposed within the framework of network psychometrics to estimate the number of factors underlying multivariate data. Unlike other methods, EGA produces a visual guide-network plot-that not only indicates the number of dimensions to retain, but also which items cluster together and their level of association. Although previous studies have found EGA to be superior to traditional methods, they are limited in the conditions considered. These issues are addressed through an extensive simulation study that incorporates a wide range of plausible structures that may be found in practice, including continuous and dichotomous data, and unidimensional and multidimensional structures. Additionally, two new EGA techniques are presented: one that extends EGA to also deal with unidimensional structures, and the other based on the triangulated maximally filtered graph approach (EGAtmfg). Both EGA techniques are compared with 5 widely used factor analytic techniques. Overall, EGA and EGAtmfg are found to perform as well as the most accurate traditional method, parallel analysis, and to produce the best large-sample properties of all the methods evaluated. To facilitate the use and application of EGA, we present a straightforward R tutorial on how to apply and interpret EGA, using scores from a well-known psychological instrument: the Marlowe-Crowne Social Desirability Scale. (PsycInfo Database Record (c) 2020 APA, all rights reserved).

摘要

探索性图分析(EGA)是一种新的技术,最近在网络心理计量学框架内提出,用于估计多元数据背后的因素数量。与其他方法不同,EGA 生成一个可视化的引导网络图,不仅指示要保留的维度数量,还指示哪些项目聚类在一起以及它们的关联程度。尽管先前的研究发现 EGA 优于传统方法,但它们在考虑的条件上存在局限性。这些问题通过一项广泛的模拟研究得到了解决,该研究纳入了实践中可能存在的广泛的合理结构,包括连续和二分数据以及单维和多维结构。此外,还提出了两种新的 EGA 技术:一种将 EGA 扩展到也处理单维结构的技术,另一种基于三角最大过滤图方法(EGAtmfg)的技术。这两种 EGA 技术都与 5 种广泛使用的因子分析技术进行了比较。总体而言,EGA 和 EGAtmfg 与最准确的传统方法平行分析表现相当,并产生了所有评估方法中最好的大样本特性。为了方便 EGA 的使用和应用,我们提供了一个简单的 R 教程,介绍如何应用和解释 EGA,使用一个著名的心理工具(Marlowe-Crowne 社会期望量表)的分数。(PsycInfo 数据库记录(c)2020 APA,保留所有权利)。

相似文献

3
Exploring Estimation Procedures for Reducing Dimensionality in Psychological Network Modeling.探索心理网络建模中降维的估计程序。
Multivariate Behav Res. 2025 Mar-Apr;60(2):184-210. doi: 10.1080/00273171.2024.2395941. Epub 2024 Sep 16.
6
Exploratory Graph Analysis of the Multidimensional Schizotypy Scale.多维精神分裂症量表的探索性图分析。
Schizophr Res. 2019 Apr;206:43-51. doi: 10.1016/j.schres.2018.12.018. Epub 2018 Dec 17.
9
A tutorial on regularized partial correlation networks.正则化偏相关网络教程。
Psychol Methods. 2018 Dec;23(4):617-634. doi: 10.1037/met0000167. Epub 2018 Mar 29.

引用本文的文献

7
Gossiping for a reason: Revised Gossip Functions Questionnaire.有目的的闲聊:修订后的闲聊功能问卷。
Psychol Test Adapt Dev. 2024 Dec;5:216-228. doi: 10.1027/2698-1866/a000080. Epub 2024 Aug 7.

本文引用的文献

2
3
Back to the basics: Rethinking partial correlation network methodology.回归基础:重新思考偏相关网络方法。
Br J Math Stat Psychol. 2020 May;73(2):187-212. doi: 10.1111/bmsp.12173. Epub 2019 Jun 17.
7
The Gaussian Graphical Model in Cross-Sectional and Time-Series Data.横截面和时间序列数据中的高斯图模型。
Multivariate Behav Res. 2018 Jul-Aug;53(4):453-480. doi: 10.1080/00273171.2018.1454823. Epub 2018 Apr 16.
8
A tutorial on regularized partial correlation networks.正则化偏相关网络教程。
Psychol Methods. 2018 Dec;23(4):617-634. doi: 10.1037/met0000167. Epub 2018 Mar 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验