Suppr超能文献

相似文献

1
2
Convex nonnegative matrix factorization with manifold regularization.
Neural Netw. 2015 Mar;63:94-103. doi: 10.1016/j.neunet.2014.11.007. Epub 2014 Dec 4.
3
Manifold Peaks Nonnegative Matrix Factorization.
IEEE Trans Neural Netw Learn Syst. 2024 May;35(5):6850-6862. doi: 10.1109/TNNLS.2022.3212922. Epub 2024 May 2.
4
Semi-supervised Nonnegative Matrix Factorization for gene expression deconvolution: a case study.
Infect Genet Evol. 2012 Jul;12(5):913-21. doi: 10.1016/j.meegid.2011.08.014. Epub 2011 Sep 10.
5
Hessian regularization based symmetric nonnegative matrix factorization for clustering gene expression and microbiome data.
Methods. 2016 Dec 1;111:80-84. doi: 10.1016/j.ymeth.2016.06.017. Epub 2016 Jun 20.
7
Dual-Graph Global and Local Concept Factorization for Data Clustering.
IEEE Trans Neural Netw Learn Syst. 2022 Jun 2;PP. doi: 10.1109/TNNLS.2022.3177433.
8
Nonnegative Matrix Factorization with Rank Regularization and Hard Constraint.
Neural Comput. 2017 Sep;29(9):2553-2579. doi: 10.1162/neco_a_00995. Epub 2017 Aug 4.
9
A robust semi-supervised NMF model for single cell RNA-seq data.
PeerJ. 2020 Oct 16;8:e10091. doi: 10.7717/peerj.10091. eCollection 2020.
10
Hessian regularization based non-negative matrix factorization for gene expression data clustering.
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:4130-3. doi: 10.1109/EMBC.2015.7319303.

引用本文的文献

2
Analyzing Single Cell RNA Sequencing with Topological Nonnegative Matrix Factorization.
J Comput Appl Math. 2024 Aug 1;445. doi: 10.1016/j.cam.2024.115842. Epub 2024 Feb 19.
3
A hybrid stochastic interpolation and compression method for kernel matrices.
J Comput Phys. 2023 Dec 1;494. doi: 10.1016/j.jcp.2023.112491. Epub 2023 Sep 12.

本文引用的文献

1
Inferring spatial and signaling relationships between cells from single cell transcriptomic data.
Nat Commun. 2020 Apr 29;11(1):2084. doi: 10.1038/s41467-020-15968-5.
3
Revealing Dynamic Mechanisms of Cell Fate Decisions From Single-Cell Transcriptomic Data.
Front Genet. 2019 Dec 23;10:1280. doi: 10.3389/fgene.2019.01280. eCollection 2019.
4
CDSeq: A novel complete deconvolution method for dissecting heterogeneous samples using gene expression data.
PLoS Comput Biol. 2019 Dec 2;15(12):e1007510. doi: 10.1371/journal.pcbi.1007510. eCollection 2019 Dec.
5
Accurate estimation of cell-type composition from gene expression data.
Nat Commun. 2019 Jul 5;10(1):2975. doi: 10.1038/s41467-019-10802-z.
6
Complete deconvolution of cellular mixtures based on linearity of transcriptional signatures.
Nat Commun. 2019 May 17;10(1):2209. doi: 10.1038/s41467-019-09990-5.
7
Hyperspectral Image Unmixing With Endmember Bundles and Group Sparsity Inducing Mixed Norms.
IEEE Trans Image Process. 2019 Jul;28(7):3435-3450. doi: 10.1109/TIP.2019.2897254. Epub 2019 Feb 4.
8
9
A molecular network of the aging human brain provides insights into the pathology and cognitive decline of Alzheimer's disease.
Nat Neurosci. 2018 Jun;21(6):811-819. doi: 10.1038/s41593-018-0154-9. Epub 2018 May 25.
10
Computational deconvolution of transcriptomics data from mixed cell populations.
Bioinformatics. 2018 Jun 1;34(11):1969-1979. doi: 10.1093/bioinformatics/bty019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验