Suppr超能文献

COVID-19 重症监护病房患者流动和护理复杂性的预测建模:一项蒙特卡罗模拟研究。

Predictive Modeling of COVID-19 Intensive Care Unit Patient Flows and Nursing Complexity: A Monte Carlo Simulation Study.

机构信息

Author Affiliations: Department of Anesthesiology and Intensive Care, CHU Timone, Assistance Publique Hôpitaux de Marseille, Aix Marseille Université (Ms Simoncini, Mrs Jarry, Mrs Moussion, Ms Marcheschi, Mrs Giordanino, Ms Lusenti, and Drs Bruder, Velly, and Boussen); Aix Marseille Université, IFSTTAR, LBA UMR_T 24 (Dr Boussen); and Institut des Neurociences de la Timone, CNRS UMR1106, Faculté de Médecine, Aix-Marseille Université (Dr Velly), France.

出版信息

Comput Inform Nurs. 2024 Jun 1;42(6):457-462. doi: 10.1097/CIN.0000000000001100.

Abstract

This study aimed to develop a Monte Carlo simulation model to forecast the number of ICU beds needed for COVID-19 patients and the subsequent nursing complexity in a French teaching hospital during the first and second pandemic outbreaks. The model used patient data from March 2020 to September 2021, including age, sex, ICU length of stay, and number of patients on mechanical ventilation or extracorporeal membrane oxygenation. Nursing complexity was assessed using a simple scale with three levels based on patient status. The simulation was performed 1000 times to generate a scenario, and the mean outcome was compared with the observed outcome. The model also allowed for a 7-day forecast of ICU occupancy. The simulation output had a good fit with the actual data, with an R2 of 0.998 and a root mean square error of 0.22. The study demonstrated the usefulness of the Monte Carlo simulation model for predicting the demand for ICU beds and could help optimize resource allocation during a pandemic. The model's extrinsic validity was confirmed using open data from the French Public Health Authority. This study provides a valuable tool for healthcare systems to anticipate and manage surges in ICU demand during pandemics.

摘要

本研究旨在开发一个蒙特卡罗模拟模型,以预测 COVID-19 患者在法国教学医院的 ICU 床位需求数量以及在第一波和第二波大流行期间的后续护理复杂性。该模型使用了 2020 年 3 月至 2021 年 9 月的患者数据,包括年龄、性别、ICU 住院时间以及接受机械通气或体外膜肺氧合的患者人数。护理复杂性使用基于患者状况的简单三等级量表进行评估。模拟进行了 1000 次以生成一个情景,并且将平均结果与实际结果进行比较。该模型还允许对 ICU 入住率进行 7 天预测。模拟输出与实际数据拟合良好,R2 为 0.998,均方根误差为 0.22。该研究表明,蒙特卡罗模拟模型在预测 ICU 床位需求方面非常有用,并可以帮助在大流行期间优化资源分配。该模型的外部有效性已使用法国公共卫生署的公开数据得到确认。本研究为医疗保健系统提供了一个有价值的工具,可用于预测和管理大流行期间 ICU 需求的激增。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验