Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina - Chapel Hill, Chapel Hill, North Carolina, United States of America.
Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina - Chapel Hill, Chapel Hill, North Carolina, United States of America.
PLoS One. 2024 Jan 22;19(1):e0283884. doi: 10.1371/journal.pone.0283884. eCollection 2024.
Latent class analysis (LCA) identifies distinct groups within a heterogeneous population, but its application to accelerometry-assessed physical activity and sedentary behavior has not been systematically explored. We conducted a systematic scoping review to describe the application of LCA to accelerometry.
Comprehensive searches in PubMed, Web of Science, CINHAL, SPORTDiscus, and Embase identified studies published through December 31, 2021. Using Covidence, two researchers independently evaluated inclusion criteria and discrepancies were resolved by consensus. Studies with LCA applied to accelerometry or combined accelerometry/self-reported measures were selected. Data extracted included study characteristics and both accelerometry and LCA methods.
Of 2555 papers found, 66 full-text papers were screened, and 12 papers (11 cross-sectional, 1 cohort) from 8 unique studies were included. Study sample sizes ranged from 217-7931 (mean 2249, standard deviation 2780). Across 8 unique studies, latent class variables included measures of physical activity (100%) and sedentary behavior (75%). About two-thirds (63%) of the studies used accelerometry only and 38% combined accelerometry and self-report to derive latent classes. The accelerometer-based variables in the LCA model included measures by day of the week (38%), weekday vs. weekend (13%), weekly average (13%), dichotomized minutes/day (13%), sex specific z-scores (13%), and hour-by-hour (13%). The criteria to guide the selection of the final number of classes and model fit varied across studies, including Bayesian Information Criterion (63%), substantive knowledge (63%), entropy (50%), Akaike information criterion (50%), sample size (50%), Bootstrap likelihood ratio test (38%), and visual inspection (38%). The studies explored up to 5 (25%), 6 (38%), or 7+ (38%) classes, ending with 3 (50%), 4 (13%), or 5 (38%) final classes.
This review explored the application of LCA to physical activity and sedentary behavior and identified areas of improvement for future studies leveraging LCA. LCA was used to identify unique groupings as a data reduction tool, to combine self-report and accelerometry, and to combine different physical activity intensities and sedentary behavior in one LCA model or separate models.
潜在类别分析(LCA)可识别异质人群中的不同群体,但尚未系统探索其在加速度计评估的身体活动和久坐行为中的应用。我们进行了系统的范围综述,以描述 LCA 在加速度计中的应用。
在 PubMed、Web of Science、CINHAL、SPORTDiscus 和 Embase 中进行全面检索,以确定截至 2021 年 12 月 31 日发表的研究。使用 Covidence,两名研究人员独立评估纳入标准,通过共识解决差异。选择应用 LCA 于加速度计或结合加速度计/自我报告测量的研究。提取的数据包括研究特征以及加速度计和 LCA 方法。
在 2555 篇论文中,有 66 篇全文论文被筛选,来自 8 项独特研究的 12 篇论文(11 项横断面研究,1 项队列研究)被纳入。研究样本量范围为 217-7931(平均值 2249,标准差 2780)。在 8 项独特的研究中,潜在类别变量包括身体活动(100%)和久坐行为(75%)的测量。大约三分之二(63%)的研究仅使用加速度计,38%的研究结合加速度计和自我报告来得出潜在类别。LCA 模型中的基于加速度计的变量包括周内(38%)、工作日与周末(13%)、每周平均(13%)、二分类分钟/天(13%)、性别特异性 z 分数(13%)、逐时(13%)。指导最终类别的选择和模型拟合的标准因研究而异,包括贝叶斯信息准则(63%)、实质性知识(63%)、熵(50%)、Akaike 信息准则(50%)、样本量(50%)、Bootstrap 似然比检验(38%)和直观检查(38%)。研究探索了多达 5(25%)、6(38%)或 7+(38%)个类别,最终确定 3(50%)、4(13%)或 5(38%)个最终类别。
本综述探讨了 LCA 在身体活动和久坐行为中的应用,并确定了未来利用 LCA 的研究需要改进的领域。LCA 被用作数据减少工具,以结合自我报告和加速度计,以及在一个 LCA 模型或单独的模型中结合不同的身体活动强度和久坐行为。