Department of Microgravity and Translational Regenerative Medicine, University Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany.
Department of Orthopaedic Surgery, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany.
Biomolecules. 2023 Dec 24;14(1):25. doi: 10.3390/biom14010025.
Over the last 30 years, the prevalence of osteoarthritis (OA), a disease characterized by a loss of articular cartilage, has more than doubled worldwide. Patients suffer from pain and progressive loss of joint function. Cartilage is an avascular tissue mostly consisting of extracellular matrix with embedded chondrocytes. As such, it does not regenerate naturally, which makes an early onset of OA prevention and treatment a necessity to sustain the patients' quality of life. In recent years, tissue engineering strategies for the regeneration of cartilage lesions have gained more and more momentum. In this study, we aimed to investigate the scaffold-free 3D cartilage tissue formation under simulated microgravity in the NASA-developed rotating wall vessel (RWV) bioreactor. For this purpose, we cultured both primary human chondrocytes as well as cells from the immortalized line C28/I2 for up to 14 days on the RWV and analyzed tissue morphology, development of apoptosis, and expression of cartilage-specific proteins and genes by histological staining, TUNEL-assays, immunohistochemical detection of collagen species, and quantitative real-time PCR, respectively. We observed spheroid formation in both cell types starting on day 3. After 14 days, constructs from C28/I2 cells had diameters of up to 5 mm, while primary chondrocyte spheroids were slightly smaller with 3 mm. Further inspection of the 14-day-old C28/I2 spheroids revealed a characteristic cartilage morphology with collagen-type 1, -type 2, and -type 10 positivity. Interestingly, these tissues were less susceptible to RWV-induced differential gene expression than those formed from primary chondrocytes, which showed significant changes in the regulation of , , , , , , , , , , , , and gene expression. These diverging findings might reflect the differences between primary and immortalized cells. Taken together, this study shows that simulated microgravity using the RWV bioreactor is suitable to engineer dense 3D cartilage-like tissue without addition of scaffolds or any other artificial materials. Both primary articular cells and the stable chondrocyte cell line C28/I2 formed 3D neocartilage when exposed for 14 days to an RWV.
在过去的 30 年中,骨关节炎(OA)的患病率在全球范围内增加了一倍以上,OA 是一种以关节软骨丧失为特征的疾病。患者会遭受疼痛和关节功能逐渐丧失的困扰。软骨是一种无血管组织,主要由细胞外基质组成,其中嵌入有软骨细胞。因此,它不能自然再生,这使得早期预防和治疗 OA 成为维持患者生活质量的必要条件。近年来,用于软骨损伤再生的组织工程策略越来越受到关注。在这项研究中,我们旨在研究在 NASA 开发的旋转壁式生物反应器(RWV)中模拟微重力下无支架的 3D 软骨组织形成。为此,我们在 RWV 上培养了原代人软骨细胞和永生化细胞系 C28/I2 ,培养时间长达 14 天,并通过组织学染色、TUNEL 分析、胶原种类的免疫组织化学检测和定量实时 PCR 分别分析组织形态、细胞凋亡的发展以及软骨特异性蛋白和基因的表达。我们观察到两种细胞类型从第 3 天开始形成球体。14 天后,C28/I2 细胞的构建体直径可达 5 毫米,而原代软骨细胞球体稍小,直径为 3 毫米。对 14 天龄的 C28/I2 球体的进一步检查显示出具有特征性的软骨形态,存在胶原蛋白类型 1、2 和 10 的阳性表达。有趣的是,与由原代软骨细胞形成的组织相比,这些组织对 RWV 诱导的差异基因表达的敏感性较低,原代软骨细胞的基因表达显示出 、 、 、 、 、 、 、 、 、 、 、 和 基因表达的显著变化。这些不同的发现可能反映了原代和永生化细胞之间的差异。总之,这项研究表明,使用 RWV 生物反应器模拟微重力适合于在没有添加支架或任何其他人工材料的情况下构建致密的 3D 软骨样组织。原代关节细胞和稳定的软骨细胞系 C28/I2 在 RWV 中暴露 14 天后都形成了 3D 新软骨。