Jeyaraman Madhan, Ramasubramanian Swaminathan, Yadav Sankalp, Jeyaraman Naveen
Clinical Research, Virginia Tech India, Dr MGR Educational and Research Institute, Chennai, IND.
Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, IND.
Cureus. 2024 Aug 5;16(8):e66224. doi: 10.7759/cureus.66224. eCollection 2024 Aug.
Novel investigations of how microgravity affects cellular and tissue development have recently been made possible by the multidisciplinary fusion of tissue engineering and space science. This review examines the intersection of cartilage tissue engineering (CTE) and space science, focusing on how microgravity affects cartilage development. Space microgravity induces distinct physiological changes in chondrocytes, including a 20-30% increase in cell diameter, a 1.5- to 2-fold increase in proliferation rates, and up to 3-fold increases in chondrogenic markers such as SOX9 and collagen type II. These cellular alterations impact extracellular matrix composition and tissue structure. Space-optimized bioreactors using dynamic culture methods replicate physiological conditions and enhance tissue growth, but the absence of gravity raises concerns about the mechanical properties of engineered cartilage. Key research areas include the role of growth factors in cartilage development under microgravity, biocompatibility and degradation of scaffold materials in space, and in situ experiments on space stations. This review highlights the opportunities and challenges in leveraging microgravity for CTE advancements, emphasizing the need for continued research to harness space environments for therapeutic applications in cartilage regeneration. The multidisciplinary fusion of tissue engineering and space science opens novel avenues for understanding and improving cartilage tissue engineering, with significant implications for the future of biomedical applications in space and on Earth.
组织工程学与空间科学的多学科融合,最近使对微重力如何影响细胞和组织发育的全新研究成为可能。本综述探讨了软骨组织工程(CTE)与空间科学的交叉领域,重点关注微重力如何影响软骨发育。太空微重力会在软骨细胞中引发明显的生理变化,包括细胞直径增加20%-30%、增殖速率提高1.5至2倍,以及软骨生成标志物如SOX9和II型胶原蛋白增加达3倍。这些细胞变化会影响细胞外基质组成和组织结构。采用动态培养方法的太空优化生物反应器可复制生理条件并促进组织生长,但重力缺失引发了对工程化软骨力学性能的担忧。关键研究领域包括生长因子在微重力下软骨发育中的作用、太空支架材料的生物相容性和降解,以及空间站原位实验。本综述强调了利用微重力推动CTE进步的机遇与挑战,强调需要持续开展研究,以利用太空环境实现软骨再生的治疗应用。组织工程学与空间科学的多学科融合为理解和改进软骨组织工程开辟了新途径,对太空和地球上生物医学应用的未来具有重要意义。