Suppr超能文献

健康图像配准的数据分析:一个用于对齐多模态/免疫组化/免疫荧光 2D 显微镜图像的用户友好型开源 ImageJ/Fiji 插件。

Data Science for Health Image Alignment: A User-Friendly Open-Source ImageJ/Fiji Plugin for Aligning Multimodality/Immunohistochemistry/Immunofluorescence 2D Microscopy Images.

机构信息

IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola, FC, Italy.

Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, BO, Italy.

出版信息

Sensors (Basel). 2024 Jan 11;24(2):451. doi: 10.3390/s24020451.

Abstract

Most of the time, the deep analysis of a biological sample requires the acquisition of images at different time points, using different modalities and/or different stainings. This information gives morphological, functional, and physiological insights, but the acquired images must be aligned to be able to proceed with the co-localisation analysis. Practically speaking, according to Aristotle's principle, "", multi-modal image registration is a challenging task that involves fusing complementary signals. In the past few years, several methods for image registration have been described in the literature, but unfortunately, there is not one method that works for all applications. In addition, there is currently no user-friendly solution for aligning images that does not require any computer skills. In this work, DS4H Image Alignment (DS4H-IA), an open-source ImageJ/Fiji plugin for aligning multimodality, immunohistochemistry (IHC), and/or immunofluorescence (IF) 2D microscopy images, designed with the goal of being extremely easy to use, is described. All of the available solutions for aligning 2D microscopy images have also been revised. The source code; standalone applications for , , and ; video tutorials; manual documentation; and sample datasets are publicly available.

摘要

大多数情况下,对生物样本进行深入分析需要在不同时间点获取使用不同模态和/或不同染色的图像。这些信息提供了形态、功能和生理方面的见解,但为了能够进行共定位分析,必须对获取的图像进行配准。实际上,根据亚里士多德的原理,“整体大于部分之和”,多模态图像配准是一项具有挑战性的任务,需要融合互补信号。在过去的几年中,文献中已经描述了几种图像配准方法,但不幸的是,没有一种方法适用于所有应用。此外,目前还没有一种用户友好的解决方案,可以对齐图像,而无需任何计算机技能。在这项工作中,描述了 DS4H Image Alignment (DS4H-IA),这是一个用于对齐多模态、免疫组织化学 (IHC) 和/或免疫荧光 (IF) 2D 显微镜图像的开源 ImageJ/Fiji 插件,其设计目标是极其易于使用。还回顾了所有现有的 2D 显微镜图像对齐解决方案。源代码、针对 、和的独立应用程序、视频教程、手册文档和示例数据集都可公开获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f61/10819694/3571fd69e4b2/sensors-24-00451-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验