Cajahuaringa Armando, Palacios Rubén Aquize, Mauricio Villanueva Juan M, Morales-Villanueva Aurelio, Machuca José, Contreras Juan, Rodríguez Bautista Kiara
Universidad Nacional de Ingeniería, Av. Tupac Amaru 210, Rimac, Lima 150101, Peru.
Universidade Federal da Paraíba Campus I, Joao Pessoa 58051-900, PB, Brazil.
Sensors (Basel). 2024 Jan 12;24(2):465. doi: 10.3390/s24020465.
Gas turbines are thermoelectric plants with various applications, such as large-scale electricity production, petrochemical industry, and steam generation. In order to optimize the operation of a gas turbine, it is necessary to develop system identification models that allow for the development of studies and analyses to increase the system's reliability. Current strategies for modeling complex and non-linear systems can be based on artificial intelligence techniques, using autoregressive neural networks of the NARX and LSTM type. In this context, this work aims to develop a model of a gas turbine capable of estimating the rotation speed of the turbine and simultaneously estimating the uncertainty associated with the estimation. These methodologies are based on artificial neural networks and the Monte Carlo dropout simulation method. The results were obtained from experimental data from a 215 MW gas turbine, getting the best model with a MAPE of 0.02% and an uncertainty associated with the turbine rotation speed of 2.2 RPM.
燃气轮机是具有多种应用的热电厂,例如大规模发电、石化工业和蒸汽生产。为了优化燃气轮机的运行,有必要开发系统识别模型,以便开展相关研究和分析,提高系统的可靠性。当前用于对复杂非线性系统进行建模的策略可以基于人工智能技术,使用NARX和LSTM类型的自回归神经网络。在此背景下,本工作旨在开发一个燃气轮机模型,该模型能够估计燃气轮机的转速,并同时估计与该估计相关的不确定性。这些方法基于人工神经网络和蒙特卡洛随机失活模拟方法。结果来自一台215兆瓦燃气轮机的实验数据,获得了最佳模型,其平均绝对百分比误差(MAPE)为0.02%,与燃气轮机转速相关的不确定性为2.2转/分钟。