Suppr超能文献

动态模式分解在癌症女性行走传感器数据中足底压力时变特征分析中的应用。

Application of Dynamic Mode Decomposition to Characterize Temporal Evolution of Plantar Pressures from Walkway Sensor Data in Women with Cancer.

机构信息

School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019, USA.

Department of Rehabilitation Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA.

出版信息

Sensors (Basel). 2024 Jan 12;24(2):0. doi: 10.3390/s24020486.

Abstract

Pressure sensor-impregnated walkways transform a person's footfalls into spatiotemporal signals that may be sufficiently complex to inform emerging artificial intelligence (AI) applications in healthcare. Key consistencies within these plantar signals show potential to uniquely identify a person, and to distinguish groups with and without neuromotor pathology. Evidence shows that plantar pressure distributions are altered in aging and diabetic peripheral neuropathy, but less is known about pressure dynamics in chemotherapy-induced peripheral neuropathy (CIPN), a condition leading to falls in cancer survivors. Studying pressure dynamics longitudinally as people develop CIPN will require a composite model that can accurately characterize a survivor's gait consistencies before chemotherapy, even in the presence of normal step-to-step variation. In this paper, we present a state-of-the-art data-driven learning technique to identify consistencies in an individual's plantar pressure dynamics. We apply this technique to a database of steps taken by each of 16 women before they begin a new course of neurotoxic chemotherapy for breast or gynecologic cancer. After extracting gait features by decomposing spatiotemporal plantar pressure data into low-rank dynamic modes characterized by three features: frequency, a decay rate, and an initial condition, we employ a machine-learning model to identify consistencies in each survivor's walking pattern using the centroids for each feature. In this sample, our approach is at least 86% accurate for identifying the correct individual using their pressure dynamics, whether using the right or left foot, or data from trials walked at usual or fast speeds. In future work, we suggest that persistent deviation from a survivor's pre-chemotherapy step consistencies could be used to automate the identification of peripheral neuropathy and other chemotherapy side effects that impact mobility.

摘要

压力传感器浸渍的走道将人的脚步转化为时空信号,这些信号可能足够复杂,可以为医疗保健领域新兴的人工智能 (AI) 应用提供信息。这些足底信号中的关键一致性具有潜在的独特识别个人的能力,并区分有和没有神经运动病理学的群体。有证据表明,足底压力分布在衰老和糖尿病周围神经病变中发生改变,但在化疗引起的周围神经病 (CIPN) 中,压力动态变化的了解较少,这种情况会导致癌症幸存者跌倒。研究人们在发生 CIPN 时的压力动态变化,需要一种复合模型,即使在存在正常步长变化的情况下,也能准确描述幸存者化疗前的步态一致性。在本文中,我们提出了一种最先进的数据驱动学习技术,用于识别个体足底压力动态变化中的一致性。我们将该技术应用于数据库中,该数据库包含 16 名女性在开始新的神经毒性化疗治疗乳腺癌或妇科癌症之前所迈出的每一步。通过将时空足底压力数据分解为具有三个特征(频率、衰减率和初始条件)的低阶动态模式来提取步态特征后,我们使用机器学习模型使用每个特征的质心来识别每个幸存者的行走模式中的一致性。在这个样本中,我们的方法至少有 86%的准确性,可以使用压力动态来识别正确的个体,无论是使用右脚还是左脚,还是使用通常或快速速度行走的试验数据。在未来的工作中,我们建议从幸存者的化疗前步长一致性中持续出现偏差,可以用于自动识别周围神经病变和其他影响移动性的化疗副作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afca/11154430/563916d030df/sensors-24-00486-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验