Suppr超能文献

使用机器学习在LC-LC调谐无线电力传输系统中无传感器预测接收器特性

Predicting Receiver Characteristics without Sensors in an LC-LC Tuned Wireless Power Transfer System Using Machine Learning.

作者信息

Kim Minhyuk, Niada Wend Yam Ella Flore, Park Sangwook

机构信息

EM Environment R&D Department, Korea Automotive Technology Institute, Cheonan 31214, Republic of Korea.

Department of Electronic Engineering, Daegu University, Gyeongsan 38453, Republic of Korea.

出版信息

Sensors (Basel). 2024 Jan 13;24(2):501. doi: 10.3390/s24020501.

Abstract

Improvement of wireless power transfer (WPT) systems is necessary to tackle issues of power transfer efficiency, high costs due to sensor and communication requirements between the transmitter (Tx) and receiver (Rx), and maintenance problems. Analytical techniques and hardware-based synchronization research for Rx-sensorless WPT may not always have been available or accurate. To address these limitations, researchers have recently employed machine learning (ML) to improve efficiency and accuracy. The objective of this work was to replace Tx-Rx communication with ML, utilizing Tx-side parameters to predict the load and coupling coefficients on an LC-LC tuned WPT system. Based on current and voltage features collected on the Tx-side for various load and coupling coefficient values, we developed two models for each load and coupling prediction. This study demonstrated that the extra trees regressor effectively predicted the characteristics of LC-LC tuned WPT systems, with coefficients of determination of 0.967 and 0.996 for load and coupling, respectively. Additionally, the mean absolute percentage errors were 0.11% and 0.017%.

摘要

改进无线电力传输(WPT)系统对于解决电力传输效率问题、因发射器(Tx)和接收器(Rx)之间的传感器及通信要求导致的高成本问题以及维护问题而言是必要的。针对无接收器传感器的WPT的分析技术和基于硬件的同步研究可能并不总是可用或准确的。为了解决这些限制,研究人员最近采用了机器学习(ML)来提高效率和准确性。这项工作的目标是用ML取代Tx-Rx通信,利用Tx侧参数来预测LC-LC调谐WPT系统上的负载和耦合系数。基于在Tx侧针对各种负载和耦合系数值收集的电流和电压特征,我们针对每个负载和耦合预测开发了两个模型。这项研究表明,极端随机树回归器有效地预测了LC-LC调谐WPT系统的特性,负载和耦合的决定系数分别为0.967和0.996。此外,平均绝对百分比误差分别为0.11%和0.017%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验