Stoecklin Sebastian, Yousaf Adnan, Gidion Gunnar, Reindl Leonhard, Rupitsch Stefan J
Laboratory for Electrical Instrumentation and Embedded Systems, Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany.
Sensors (Basel). 2021 Mar 12;21(6):2023. doi: 10.3390/s21062023.
Near-field interfaces with miniaturized coil systems and low output power levels, such as applied in biomedical sensor systems, can suffer from severe efficiency degradation due to dynamic impedance mismatches, reducing battery life of the power transmitter unit and requiring to increase the level of electromagnetic emission. Moreover, the stability of weakly-coupled power transfer systems is generally limited by transient changes in coil alignment and load power consumption. Hence, a central research question in the domain of wireless power transfer is how to realize an adaptive impedance matching system under the constraints of a simultaneous power feedback to increase the system's efficiency and stability, while maintaining circuit characteristics such as small size, low power consumption and fast reaction times. This paper presents a novel approach based on a two-stage control loop implemented in the primary-side reader unit, which uses a digital PI controller to maintain the rectifier output voltage for power feedback and an on-top perturb-and-observe controller configuring the setpoint of the voltage controller to maximize efficiency. The paper mathematically analyzes the AC and DC transfer characteristics of a resonant inductive link to design the reactive AC matching network, the digital voltage controller and ultimately the DC-domain impedance matching algorithm. It was found that static reactive L networks result in suitable efficiency levels for coils with sufficiently high quality factor even without adaptive tuning of operational frequency or reactive components. Furthermore, the regulated output voltage of the rectifier is a direct measure of the DC load impedance when using a regular DC/DC converter to supply the load circuits, so that this quantity can be tuned to maximize efficiency. A prototype implementation demonstrates the algorithms in a 40.68 MHz inductive link with load power levels from 10 to 100 mW and tuning time constants of 300 ms, while allowing for a simplified receiver with a footprint smaller than 200 mm and a self-consumption below 1 mW. Hence, the presented concepts enable adaptive impedance matching with favorable characteristics for low-energy sensor systems, i.e., minimized footprint, power level and reaction time.
近场接口采用小型化线圈系统且输出功率较低,比如应用于生物医学传感器系统中,由于动态阻抗失配,可能会出现严重的效率下降,从而这会缩短功率发射单元的电池寿命,并需要提高电磁辐射水平。此外,弱耦合功率传输系统的稳定性通常受线圈对准和负载功耗的瞬态变化限制。因此,无线功率传输领域的一个核心研究问题是,如何在同时进行功率反馈的约束条件下实现自适应阻抗匹配系统,以提高系统的效率和稳定性,同时保持诸如小尺寸、低功耗和快速响应时间等电路特性。本文提出了一种基于在初级侧读取器单元中实现的两级控制回路的新颖方法,该方法使用数字PI控制器来维持用于功率反馈的整流器输出电压,并使用一种叠加的扰动观察控制器来配置电压控制器的设定点以实现效率最大化。本文对谐振电感链路的交流和直流传输特性进行了数学分析,以设计无功交流匹配网络、数字电压控制器,并最终设计直流域阻抗匹配算法。研究发现,即使不进行工作频率或无功元件的自适应调谐,静态无功L网络对于具有足够高品质因数的线圈也能产生合适的效率水平。此外,当使用常规的DC/DC转换器为负载电路供电时,整流器的调节输出电压是直流负载阻抗的直接度量,因此可以对该量进行调整以实现效率最大化。一个原型实现展示了在一个40.68 MHz电感链路中的算法,负载功率水平为10至100 mW,调谐时间常数为300 ms,同时允许使用一个简化的接收器,其占地面积小于200平方毫米,自功耗低于1 mW。因此,所提出的概念能够实现具有适合低能量传感器系统的良好特性的自适应阻抗匹配,即最小化的占地面积、功率水平和响应时间。