Lee Jinho, Bang Geonkyu, Shimizu Takaya, Iehara Masato, Kamijo Shunsuke
Emerging Design and Informatics Course, Graduate School of Interdisciplinary Information Studies, The University of Tokyo, 4 Chome-6-1 Komaba, Meguro City, Tokyo 153-0041, Japan.
Mitsubishi Heavy Industries Machinery Systems Ltd., 1-1, Wadasaki-cho 1-chome, Hyogo-ku, Kobe 652-8585, Japan.
Sensors (Basel). 2024 Jan 16;24(2):559. doi: 10.3390/s24020559.
In autonomous vehicles, the LiDAR and radar sensors are indispensable components for measuring distances to objects. While deep-learning-based algorithms for LiDAR sensors have been extensively proposed, the same cannot be said for radar sensors. LiDAR and radar share the commonality of measuring distances, but they are used in different environments. LiDAR tends to produce less noisy data and provides precise distance measurements, but it is highly affected by environmental factors like rain and fog. In contrast, radar is less impacted by environmental conditions but tends to generate noisier data. To reduce noise in radar data and enhance radar data augmentation, we propose a LiDAR-to-Radar translation method with a voxel feature extraction module, leveraging the fact that both sensors acquire data in a point-based manner. Because of the translation of high-quality LiDAR data into radar data, this becomes achievable. We demonstrate the superiority of our proposed method by acquiring and using data from both LiDAR and radar sensors in the same environment for validation.
在自动驾驶车辆中,激光雷达(LiDAR)和雷达传感器是测量与物体距离的不可或缺的组件。虽然已经广泛提出了基于深度学习的激光雷达传感器算法,但雷达传感器的情况并非如此。激光雷达和雷达都具有测量距离的共性,但它们用于不同的环境。激光雷达往往产生噪声较少的数据并提供精确的距离测量,但它受雨、雾等环境因素的影响很大。相比之下,雷达受环境条件的影响较小,但往往会产生噪声较大的数据。为了减少雷达数据中的噪声并增强雷达数据增强,我们提出了一种具有体素特征提取模块的激光雷达到雷达的转换方法,利用这两种传感器都以基于点的方式获取数据这一事实。由于将高质量的激光雷达数据转换为雷达数据,这变得可行。我们通过在同一环境中获取和使用来自激光雷达和雷达传感器的数据进行验证,证明了我们提出的方法的优越性。