Abdelraouf Omar A M, Anthur Aravind P, Wang X Renshaw, Wang Qi Jie, Liu Hong
School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.
Institute of Materials Research and Engineering, Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore.
ACS Nano. 2024 Feb 6;18(5):4388-4397. doi: 10.1021/acsnano.3c10471. Epub 2024 Jan 23.
Coherent deep ultraviolet (DUV) light sources are crucial for various applications such as nanolithography, biomedical imaging, and spectroscopy. DUV light sources can be generated by using conventional nonlinear optical crystals (NLOs). However, NLOs are limited by their bulky size, inadequate transparency at the DUV regime, and stringent phase-matching requirements for harmonic generation. Recently, dielectric metasurfaces support high -factor resonances and offer a promising approach for efficient harmonic generation at short wavelengths. In this study, we demonstrated a crystalline silicon (c-Si) metasurface simultaneously exciting modal phase-matched bound states in the continuum (BIC) resonance at the fundamental wavelength of 840 nm with a higher degree of freedom for precise control of the BIC resonance and a plasmonic resonance at the wavelength of 280 nm in the DUV to enhance third harmonic generation (THG). We experimentally achieved a -factor of ∼180 owing to the relatively large refractive index of the c-Si and the geometric symmetry breaking of the structure. We realized THG at a wavelength of 280 nm with a power of 14.5 nW by using a peak power density of 15 GW/cm excitation. The measured THG power is 14 times higher than the state-of-the-art THG dielectric metasurfaces using the same peak power density in the DUV regime, and the maximum obtained THG power enhancement factor is up to 48. This approach relies on the significant third-order nonlinear susceptibility of c-Si, the interband plasmonic nature of the c-Si in the DUV, and the strong field confinement of BIC resonance to boost overall nonlinear conversion efficiency to 5.2 × 10% in the DUV regime. Our work shows the potential of c-Si BIC metasurfaces for developing efficient and ultracompact DUV light sources using high-efficacy nonlinear optical devices.
相干深紫外(DUV)光源对于纳米光刻、生物医学成像和光谱学等各种应用至关重要。DUV光源可以通过使用传统的非线性光学晶体(NLO)来产生。然而,NLO受到其体积庞大、在DUV波段透明度不足以及谐波产生的严格相位匹配要求的限制。最近,介电超表面支持高Q因子共振,并为短波长下的高效谐波产生提供了一种有前景的方法。在本研究中,我们展示了一种晶体硅(c-Si)超表面,它在840 nm的基波波长下同时激发连续谱中的模态相位匹配束缚态(BIC)共振,具有更高的自由度来精确控制BIC共振,并在DUV的280 nm波长处激发等离子体共振,以增强三次谐波产生(THG)。由于c-Si相对较大的折射率和结构的几何对称性破坏,我们通过实验实现了约180的Q因子。通过使用15 GW/cm²的峰值功率密度激发,我们在280 nm波长处实现了功率为14.5 nW的THG。在DUV波段使用相同的峰值功率密度时,测得的THG功率比目前最先进的THG介电超表面高14倍,获得的最大THG功率增强因子高达48。这种方法依赖于c-Si显著的三阶非线性极化率、c-Si在DUV中的带间等离子体性质以及BIC共振的强场限制,以将DUV波段的整体非线性转换效率提高到5.2×10⁻⁵%。我们的工作展示了c-Si BIC超表面在使用高效非线性光学器件开发高效且超紧凑DUV光源方面的潜力。