Suppr超能文献

癫痫发作日记预测的前瞻性验证未达预期。

Prospective validation of a seizure diary forecasting falls short.

作者信息

Goldenholz Daniel M, Eccleston Celena, Moss Robert, Westover M Brandon

机构信息

Dept. of Neurology, Beth Israel Deaconess Medical Center, Boston 02215 MA.

Dept. of Neurology, Harvard Medical School, Boston 02215 MA.

出版信息

medRxiv. 2024 Jan 13:2024.01.11.24301175. doi: 10.1101/2024.01.11.24301175.

Abstract

OBJECTIVE

Recently, a deep learning AI model forecasted seizure risk using retrospective seizure diaries with higher accuracy than random forecasts. The present study sought to prospectively evaluate the same algorithm.

METHODS

We recruited a prospective cohort of 46 people with epilepsy; 25 completed sufficient data entry for analysis (median 5 months). We used the same AI method as in our prior study. Group-level and individual-level Brier Skill Scores (BSS) compared random forecasts and simple moving average forecasts to the AI.

RESULTS

The AI had an AUC of 0.82. At the group level, the AI outperformed random forecasting (BSS=0.53). At the individual level, AI outperformed random in 28% of cases. At the group and individual level, the moving average outperformed the AI. If pre-enrollment (non-verified) diaries (with presumed under-reporting) were included, the AI significantly outperformed both comparators. Surveys showed most did not mind poor quality LOW-RISK or HIGH-RISK forecasts, yet 91% wanted access to these forecasts.

SIGNIFICANCE

The previously developed AI forecasting tool did not outperform a very simple moving average forecasting this prospective cohort, suggesting that the AI model should be replaced.

摘要

目的

最近,一种深度学习人工智能模型利用回顾性癫痫发作日记预测癫痫发作风险,其准确性高于随机预测。本研究旨在对同一算法进行前瞻性评估。

方法

我们招募了一个由46名癫痫患者组成的前瞻性队列;25人完成了足够的数据录入以供分析(中位数为5个月)。我们使用了与之前研究相同的人工智能方法。通过组水平和个体水平的布里尔技能评分(BSS)将随机预测和简单移动平均预测与人工智能进行比较。

结果

人工智能的曲线下面积(AUC)为0.82。在组水平上,人工智能的表现优于随机预测(BSS = 0.53)。在个体水平上,人工智能在28%的病例中表现优于随机预测。在组水平和个体水平上,移动平均法的表现优于人工智能。如果纳入预登记(未经核实)的日记(可能存在报告不足),人工智能的表现显著优于两个比较对象。调查显示,大多数人不介意低风险或高风险预测的质量差,但91%的人希望能够获得这些预测。

意义

在这个前瞻性队列中,先前开发的人工智能预测工具的表现不如非常简单的移动平均预测,这表明该人工智能模型应该被取代。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfe4/10802655/1b0849557195/nihpp-2024.01.11.24301175v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验