Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China.
Songshan Lake Materials Laboratory, 523808 Dongguan, Guangdong, China.
Nucleic Acids Res. 2024 Apr 12;52(6):3249-3261. doi: 10.1093/nar/gkae026.
Sen1 is an essential helicase for factor-dependent transcription termination in Saccharomyces cerevisiae, whose molecular-motor mechanism has not been well addressed. Here, we use single-molecule experimentation to better understand the molecular-motor determinants of its action on RNA polymerase II (Pol II) complex. We quantify Sen1 translocation activity on single-stranded DNA (ssDNA), finding elevated translocation rates, high levels of processivity and ATP affinities. Upon deleting the N- and C-terminal domains, or further deleting different parts of the prong subdomain, which is an essential element for transcription termination, Sen1 displays changes in its translocation properties, such as slightly reduced translocation processivities, enhanced translocation rates and statistically identical ATP affinities. Although these parameters fulfil the requirements for Sen1 translocating along the RNA transcript to catch up with a stalled Pol II complex, we observe significant reductions in the termination efficiencies as well as the factions of the formation of the previously described topological intermediate prior to termination, suggesting that the prong may preserve an interaction with Pol II complex during factor-dependent termination. Our results underscore a more detailed rho-like mechanism of Sen1 and a critical interaction between Sen1 and Pol II complex for factor-dependent transcription termination in eukaryotes.
Sen1 是酿酒酵母中依赖因子的转录终止所必需的解旋酶,但其分子马达机制尚未得到很好的解决。在这里,我们使用单分子实验来更好地理解其在 RNA 聚合酶 II(Pol II)复合物上的作用的分子马达决定因素。我们量化了 Sen1 在单链 DNA(ssDNA)上的易位活性,发现其易位速率升高,具有高的延伸性和 ATP 亲和力。在删除 N-和 C-末端结构域,或进一步删除叉状亚基的不同部分(叉状亚基是转录终止的必需元件)后,Sen1 的易位性质发生变化,例如易位延伸性略有降低,易位速率增强,并且 ATP 亲和力在统计学上相同。尽管这些参数满足 Sen1 沿着 RNA 转录本移动以赶上停滞的 Pol II 复合物的要求,但我们观察到终止效率以及之前描述的拓扑中间产物形成的部分明显降低,这表明在依赖因子的终止过程中,叉状亚基可能与 Pol II 复合物保持相互作用。我们的结果强调了 Sen1 的更详细的 rho 样机制,以及 Sen1 和 Pol II 复合物之间的关键相互作用,这对于真核生物中依赖因子的转录终止是至关重要的。