Nature. 2016 Aug 11;536(7615):234-7. doi: 10.1038/nature19080. Epub 2016 Aug 3.
Escherichia coli Mfd translocase enables transcription-coupled repair by displacing RNA polymerase (RNAP) stalled on a DNA lesion and then coordinating assembly of the UvrAB(C) components at the damage site. Recent studies have shown that after binding to and dislodging stalled RNAP, Mfd remains on the DNA in the form of a stable, slowly translocating complex with evicted RNAP attached. Here we find, using a series of single-molecule assays, that recruitment of UvrA and UvrAB to Mfd-RNAP arrests the translocating complex and causes its dissolution. Correlative single-molecule nanomanipulation and fluorescence measurements show that dissolution of the complex leads to loss of both RNAP and Mfd. Subsequent DNA incision by UvrC is faster than when only UvrAB(C) are available, in part because UvrAB binds 20-200 times more strongly to Mfd–RNAP than to DNA damage. These observations provide a quantitative framework for comparing complementary DNA repair pathways in vivo.
大肠杆菌 Mfd 转位酶通过置换在 DNA 损伤处停滞的 RNA 聚合酶(RNAP),从而促进转录偶联修复,然后协调 UvrAB(C) 组件在损伤部位的组装。最近的研究表明,在结合并逐出停滞的 RNAP 后,Mfd 以与逐出的 RNAP 相连的稳定、缓慢转位复合物的形式留在 DNA 上。在这里,我们使用一系列单分子测定发现,UvrA 和 UvrAB 对 Mfd-RNAP 的募集会使转位复合物失活并导致其溶解。相关的单分子纳米操作和荧光测量表明,复合物的溶解导致 RNAP 和 Mfd 的丢失。随后,UvrC 的 DNA 切口比只有 UvrAB(C) 时更快,部分原因是 UvrAB 与 Mfd-RNAP 的结合强度比与 DNA 损伤的结合强度强 20-200 倍。这些观察结果为比较体内互补的 DNA 修复途径提供了定量框架。