Suppr超能文献

潜在传染病预警:希腊塞萨利大学医院肺部诊所数据预警工具的初步应用。

Early warning of potential epidemics: A pilot application of an early warning tool to data from the pulmonary clinic of the university hospital of Thessaly, Greece.

机构信息

Faculty of Public and One Health, University of Thessaly, Karditsa, Greece.

Respiratory Medicine Department, University of Thessaly, School of Medicine, University Hospital of Larissa, Larissa, Greece.

出版信息

J Infect Public Health. 2024 Mar;17(3):401-405. doi: 10.1016/j.jiph.2024.01.008. Epub 2024 Jan 11.

Abstract

BACKGROUND & METHODS: This paper describes a pilot application of the Epidemic Volatility Index (EVI) to data from the pulmonary clinic of the University Hospital of Thessaly, Greece, for monitoring respiratory infections, COVID-19, and flu cases. EVI, a simple and easily implemented early warning method based on the volatility of newly reported cases, exhibited consistent and stable performance in detecting new waves of epidemics. The study highlights the importance of implementing early warning tools to address the effects of epidemics, including containment of outbreaks, timely intervention strategies, and resource allocation within real-world clinical settings as part of a broader public health strategy.

RESULTS

The results presented in the figures demonstrate the association between successive early warnings and the onset of new waves, providing valuable insights for proactive decision-making. A web-based application enabling real-time monitoring and informed decision-making by healthcare professionals, public health officials, and policymakers was developed.

CONCLUSIONS

This study emphasizes the significant role of early warning methods in managing epidemics and safeguarding public health. Future research may explore extensions and combinations of multiple warning systems for optimal outbreak interventions and application of the methods in the context of personalized medicine.

摘要

背景与方法

本文描述了一种将流行度指数(Epidemic Volatility Index,EVI)应用于希腊塞萨利大学医院呼吸科数据的试点应用,用于监测呼吸道感染、COVID-19 和流感病例。EVI 是一种基于新报告病例波动性的简单且易于实施的早期预警方法,在检测新的疫情浪潮方面表现出一致且稳定的性能。该研究强调了实施早期预警工具的重要性,以应对疫情的影响,包括控制疫情爆发、及时采取干预策略以及在实际临床环境中分配资源,这是更广泛的公共卫生战略的一部分。

结果

图中呈现的结果表明了连续的早期预警与新疫情浪潮的发生之间的关联,为主动决策提供了有价值的见解。我们开发了一个基于网络的应用程序,使医疗保健专业人员、公共卫生官员和政策制定者能够实时监测并进行知情决策。

结论

本研究强调了早期预警方法在管理疫情和保障公共卫生方面的重要作用。未来的研究可以探索扩展和组合多种预警系统,以实现最佳的疫情干预,并将这些方法应用于个性化医疗的背景下。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验