Instituto de Telecomunicações, Avenida Rovisco Pais 1, Inst. Sup. Técnico, Torre Norte, Piso 10, 1049-001, Lisbon, Portugal.
Instituto Superior Técnico, Dep. of Bioengineering, Avenida Rovisco Pais 1, Inst. Sup. Técnico, Torre Norte, Piso 10, 1049-001, Lisbon, Portugal.
Sci Data. 2024 Jan 23;11(1):116. doi: 10.1038/s41597-023-02905-6.
Affective computing has experienced substantial advancements in recognizing emotions through image and facial expression analysis. However, the incorporation of physiological data remains constrained. Emotion recognition with physiological data shows promising results in controlled experiments but lacks generalization to real-world settings. To address this, we present G-REx, a dataset for real-world affective computing. We collected physiological data (photoplethysmography and electrodermal activity) using a wrist-worn device during long-duration movie sessions. Emotion annotations were retrospectively performed on segments with elevated physiological responses. The dataset includes over 31 movie sessions, totaling 380 h+ of data from 190+ subjects. The data were collected in a group setting, which can give further context to emotion recognition systems. Our setup aims to be easily replicable in any real-life scenario, facilitating the collection of large datasets for novel affective computing systems.
情感计算在通过图像和面部表情分析识别情感方面取得了重大进展。然而,生理数据的纳入仍然受到限制。使用生理数据进行情感识别在受控实验中显示出有前景的结果,但缺乏对真实环境的泛化。为了解决这个问题,我们提出了 G-REx,这是一个用于真实情感计算的数据集。我们使用腕戴式设备在长时间的电影观看过程中收集生理数据(光体积描记法和皮肤电活动)。使用生理反应增强的片段进行回顾性情感注释。该数据集包括 31 多个电影观看场景,来自 190 多个受试者的数据总计 380 小时以上。数据是在小组环境中收集的,这可以为情感识别系统提供更多的背景信息。我们的设置旨在在任何现实生活场景中轻松复制,方便为新的情感计算系统收集大型数据集。