Suppr超能文献

表现情感:诱发情感的综合数据集。

Acting Emotions: a comprehensive dataset of elicited emotions.

机构信息

Faculty of Engineering, Department of Informatics Engineering, University of Porto, Porto, 4200-465, Portugal.

INESC-TEC, Telecommunications and Multimedia, Porto, 4200-465, Portugal.

出版信息

Sci Data. 2024 Jan 31;11(1):147. doi: 10.1038/s41597-024-02957-2.

Abstract

Emotions encompass physiological systems that can be assessed through biosignals like electromyography and electrocardiography. Prior investigations in emotion recognition have primarily focused on general population samples, overlooking the specific context of theatre actors who possess exceptional abilities in conveying emotions to an audience, namely acting emotions. We conducted a study involving 11 professional actors to collect physiological data for acting emotions to investigate the correlation between biosignals and emotion expression. Our contribution is the DECEiVeR (DatasEt aCting Emotions Valence aRousal) dataset, a comprehensive collection of various physiological recordings meticulously curated to facilitate the recognition of a set of five emotions. Moreover, we conduct a preliminary analysis on modeling the recognition of acting emotions from raw, low- and mid-level temporal and spectral data and the reliability of physiological data across time. Our dataset aims to leverage a deeper understanding of the intricate interplay between biosignals and emotional expression. It provides valuable insights into acting emotion recognition and affective computing by exposing the degree to which biosignals capture emotions elicited from inner stimuli.

摘要

情绪包括可以通过肌电图和心电图等生物信号进行评估的生理系统。先前的情绪识别研究主要集中在普通人群样本上,忽略了戏剧演员这一特定群体,他们拥有向观众传达情感的特殊能力,即表演情感。我们进行了一项涉及 11 名专业演员的研究,收集表演情感的生理数据,以研究生物信号与情绪表达之间的相关性。我们的贡献是 DECEiVeR(DataSet Acting Emotions Valence Arousal,数据集:表演情绪的效价唤醒)数据集,这是一个精心策划的各种生理记录的综合集合,旨在促进对一组五种情绪的识别。此外,我们还对从原始、低和中水平的时间和频谱数据以及生理数据随时间的可靠性建模进行了初步分析。我们的数据集旨在利用对生物信号和情感表达之间复杂相互作用的更深入理解。它通过揭示生物信号从内部刺激中捕捉到的情感的程度,为表演情感识别和情感计算提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcb9/10831041/ac7e18b8ad2b/41597_2024_2957_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验