Ro Seokhyun, Park Jonghyeon, Yoo Hanjin, Han Changhee, Lee Ahhyung, Lee Yoojin, Kim Minjeong, Han Yeongcheol, Svensson Anders, Shin Jinhwa, Ro Chul-Un, Hong Sungmin
Department of Ocean Sciences, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea.
Division of Glacial Environment Research, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon, 21990, Republic of Korea.
Sci Rep. 2024 Jan 23;14(1):2040. doi: 10.1038/s41598-024-52546-x.
Greenland ice core records exhibited 100-fold higher dust concentrations during the Last Glacial Maximum (LGM) than during the Holocene, and dust input temporal variability corresponded to different climate states in the LGM. While East Asian deserts, the Sahara, and European loess have been suggested as the potential source areas (PSAs) for Greenland LGM dust, millennial-scale variability in their relative contributions within the LGM remains poorly constrained. Here, we present the morphological, mineralogical, and geochemical characteristics of insoluble microparticles to constrain the provenance of dust in Greenland NEEM ice core samples covering cold Greenland Stadials (GS)-2.1a to GS-3 (~ 14.7 to 27.1 kyr ago) in the LGM. The analysis was conducted on individual particles in microdroplet samples by scanning electron microscopy with energy dispersive X-ray spectroscopy and Raman microspectroscopy. We found that the kaolinite-to-chlorite (K/C) ratios and chemical index of alteration (CIA) values were substantially higher (K/C: 1.4 ± 0.7, CIA: 74.7 ± 2.9) during GS-2.1a to 2.1c than during GS-3 (K/C: 0.5 ± 0.1, CIA: 65.8 ± 2.8). Our records revealed a significant increase in Saharan dust contributions from GS-2.1a to GS-2.1c and that the Gobi Desert and/or European loess were potential source(s) during GS-3. This conclusion is further supported by distinctly different carbon contents in particles corresponding to GS-2.1 and GS-3. These results are consistent with previous estimates of proportional dust source contributions obtained using a mixing model based on Pb and Sr isotopic compositions in NEEM LGM ice and indicate millennial-scale changes in Greenland dust provenance that are probably linked to large-scale atmospheric circulation variabilities during the LGM.
格陵兰冰芯记录显示,末次盛冰期(LGM)的尘埃浓度比全新世高出100倍,且尘埃输入的时间变化与LGM期间的不同气候状态相对应。虽然东亚沙漠、撒哈拉沙漠和欧洲黄土被认为是格陵兰LGM尘埃的潜在源区(PSA),但它们在LGM内相对贡献的千年尺度变化仍受到的限制较少。在这里,我们展示了不溶性微粒的形态、矿物学和地球化学特征,以确定格陵兰NEEM冰芯样本中尘埃的来源,这些样本涵盖了LGM期间寒冷的格陵兰stadials(GS)-2.1a至GS-3(约14.7至27.1千年前)。通过扫描电子显微镜结合能量色散X射线光谱和拉曼光谱对微滴样本中的单个颗粒进行了分析。我们发现,GS-2.1a至2.1c期间的高岭石与绿泥石(K/C)比值和化学蚀变指数(CIA)值显著高于GS-3期间(K/C:1.4±0.7,CIA:74.7±2.9),而GS-3期间(K/C:0.5±0.1,CIA:65.8±2.8)。我们的记录显示,从GS-2.1a到GS-2.1c,撒哈拉尘埃的贡献显著增加,并且在GS-3期间,戈壁沙漠和/或欧洲黄土是潜在的源区。对应于GS-2.1和GS-3的颗粒中明显不同的碳含量进一步支持了这一结论。这些结果与之前使用基于NEEM LGM冰中Pb和Sr同位素组成的混合模型获得的尘埃源比例贡献估计一致,并表明格陵兰尘埃来源的千年尺度变化可能与LGM期间的大规模大气环流变化有关。