Schumann Julia, Stamatakis Michail, Michaelides Angelos, Réocreux Romain
Thomas Young Centre and Department of Chemical Engineering, University College London, London, UK.
Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
Nat Chem. 2024 May;16(5):749-754. doi: 10.1038/s41557-023-01424-6. Epub 2024 Jan 23.
Single-atom alloys have recently emerged as highly active and selective alloy catalysts. Unlike pure metals, single-atom alloys escape the well-established conceptual framework developed nearly three decades ago for predicting catalytic performance. Although this offers the opportunity to explore so far unattainable chemistries, this leaves us without a simple guide for the design of single-atom alloys able to catalyse targeted reactions. Here, based on thousands of density functional theory calculations, we reveal a 10-electron count rule for the binding of adsorbates on the dopant atoms, usually the active sites, of single-atom alloy surfaces. A simple molecular orbital approach rationalizes this rule and the nature of the adsorbate-dopant interaction. In addition, our intuitive model can accelerate the rational design of single-atom alloy catalysts. Indeed, we illustrate how the unique insights provided by the electron count rule help identify the most promising dopant for an industrially relevant hydrogenation reaction, thereby reducing the number of potential materials by more than one order of magnitude.
单原子合金最近已成为高活性和高选择性的合金催化剂。与纯金属不同,单原子合金突破了近三十年前建立的用于预测催化性能的既定概念框架。尽管这为探索迄今无法实现的化学性质提供了机会,但这也使我们在设计能够催化目标反应的单原子合金时缺乏简单的指导。在此,基于数千次密度泛函理论计算,我们揭示了单原子合金表面上吸附质在通常作为活性位点的掺杂原子上的结合的10电子计数规则。一种简单的分子轨道方法使该规则和吸附质 - 掺杂剂相互作用的性质合理化。此外,我们直观的模型可以加速单原子合金催化剂的合理设计。事实上,我们说明了电子计数规则提供的独特见解如何有助于确定工业相关氢化反应中最有前景的掺杂剂,从而将潜在材料的数量减少一个多数量级以上。