Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
J Am Chem Soc. 2023 Jul 12;145(27):14894-14902. doi: 10.1021/jacs.3c04030. Epub 2023 Jun 30.
Physical catalysts often have multiple sites where reactions can take place. One prominent example is single-atom alloys, where the reactive dopant atoms can preferentially locate in the bulk or at different sites on the surface of the nanoparticle. However, ab initio modeling of catalysts usually only considers one site of the catalyst, neglecting the effects of multiple sites. Here, nanoparticles of copper doped with single-atom rhodium or palladium are modeled for the dehydrogenation of propane. Single-atom alloy nanoparticles are simulated at 400-600 K, using machine learning potentials trained on density functional theory calculations, and then the occupation of different single-atom active sites is identified using a similarity kernel. Further, the turnover frequency for all possible sites is calculated for propane dehydrogenation to propene through microkinetic modeling using density functional theory calculations. The total turnover frequencies of the whole nanoparticle are then described from both the population and the individual turnover frequency of each site. Under operating conditions, rhodium as a dopant is found to almost exclusively occupy (111) surface sites while palladium as a dopant occupies a greater variety of facets. Undercoordinated dopant surface sites are found to tend to be more reactive for propane dehydrogenation compared to the (111) surface. It is found that considering the dynamics of the single-atom alloy nanoparticle has a profound effect on the calculated catalytic activity of single-atom alloys by several orders of magnitude.
物理催化剂通常具有多个反应可以发生的位点。一个突出的例子是单原子合金,其中反应性掺杂原子可以优先位于纳米颗粒的体相或表面的不同位置。然而,催化剂的从头计算模型通常只考虑催化剂的一个位点,忽略了多个位点的影响。在这里,用密度泛函理论计算训练的机器学习势模拟了铜掺杂单原子铑或钯的纳米颗粒的丙烷脱氢反应。在 400-600 K 下模拟单原子合金纳米颗粒,然后使用相似性核来识别不同单原子活性位的占据。此外,通过使用密度泛函理论计算的微观动力学建模,计算了丙烷脱氢生成丙烯的所有可能位点的周转频率。然后,从每个位点的总体积分数和单个周转频率两个方面来描述整个纳米颗粒的总周转频率。在操作条件下,发现作为掺杂剂的铑几乎完全占据(111)表面位,而钯作为掺杂剂则占据更多种类的晶面。发现与(111)表面相比,低配位的掺杂表面位对于丙烷脱氢反应更具反应性。结果表明,考虑单原子合金纳米颗粒的动力学对单原子合金的计算催化活性有显著的影响,其影响幅度可达几个数量级。