Butakova Maria A, Chernov Andrey V, Kartashov Oleg O, Soldatov Alexander V
The Smart Materials Research Institute, Southern Federal University, 178/24 Sladkova, 344090 Rostov-on-Don, Russia.
Nanomaterials (Basel). 2021 Dec 21;12(1):12. doi: 10.3390/nano12010012.
Artificial intelligence (AI) approaches continue to spread in almost every research and technology branch. However, a simple adaptation of AI methods and algorithms successfully exploited in one area to another field may face unexpected problems. Accelerating the discovery of new functional materials in chemical self-driving laboratories has an essential dependence on previous experimenters' experience. Self-driving laboratories help automate and intellectualize processes involved in discovering nanomaterials with required parameters that are difficult to transfer to AI-driven systems straightforwardly. It is not easy to find a suitable design method for self-driving laboratory implementation. In this case, the most appropriate way to implement is by creating and customizing a specific adaptive digital-centric automated laboratory with a data fusion approach that can reproduce a real experimenter's behavior. This paper analyzes the workflow of autonomous experimentation in the self-driving laboratory and distinguishes the core structure of such a laboratory, including sensing technologies. We propose a novel data-centric research strategy and multilevel data flow architecture for self-driving laboratories with the autonomous discovery of new functional nanomaterials.
人工智能(AI)方法几乎在每个研究和技术领域都在不断扩展。然而,简单地将在一个领域成功应用的人工智能方法和算法应用于另一个领域可能会面临意想不到的问题。在化学自动驾驶实验室中加速发现新型功能材料在很大程度上依赖于先前实验者的经验。自动驾驶实验室有助于实现涉及发现具有所需参数的纳米材料的过程自动化和智能化,而这些参数很难直接转移到人工智能驱动的系统中。为自动驾驶实验室的实施找到合适的设计方法并非易事。在这种情况下,最合适的实施方式是通过创建和定制一个特定的以数字为中心的自适应自动化实验室,并采用能够重现真实实验者行为的数据融合方法。本文分析了自动驾驶实验室中的自主实验工作流程,并区分了此类实验室的核心结构,包括传感技术。我们为具有自主发现新型功能纳米材料能力的自动驾驶实验室提出了一种新颖的以数据为中心的研究策略和多级数据流架构。