Piercy Thomas, Herrmann Guido, Cangelosi Angelo, Zoulias Ioannis Dimitrios, Lopez Erwin
Faculty of Science and Engineering, The University of Manchester, Manchester, United Kingdom.
Remote Applications in Challenging Environments, United Kingdom Atomic Energy Authority, Culham Science Centre, Oxford, United Kingdom.
Front Robot AI. 2024 Jan 9;10:1287417. doi: 10.3389/frobt.2023.1287417. eCollection 2023.
In current telerobotics and telemanipulator applications, operators must perform a wide variety of tasks, often with a high risk associated with failure. A system designed to generate data-based behavioural estimations using observed operator features could be used to reduce risks in industrial teleoperation. This paper describes a non-invasive bio-mechanical feature capture method for teleoperators used to trial novel human-error rate estimators which, in future work, are intended to improve operational safety by providing behavioural and postural feedback to the operator. Operator monitoring studies were conducted using the MASCOT teleoperation system at UKAEA RACE; the operators were given controlled tasks to complete during observation. Building upon existing works for vehicle-driver intention estimation and robotic surgery operator analysis, we used 3D point-cloud data capture using a commercially available depth camera to estimate an operator's skeletal pose. A total of 14 operators were observed and recorded for a total of approximately 8 h, each completing a baseline task and a task designed to induce detectable but safe collisions. Skeletal pose was estimated, collision statistics were recorded, and questionnaire-based psychological assessments were made, providing a database of qualitative and quantitative data. We then trialled data-driven analysis by using statistical and machine learning regression techniques (SVR) to estimate collision rates. We further perform and present an input variable sensitivity analysis for our selected features.
在当前的远程机器人技术和遥控操作器应用中,操作员必须执行各种各样的任务,且往往伴随着与失败相关的高风险。一个旨在利用观察到的操作员特征生成基于数据的行为估计的系统,可用于降低工业远程操作中的风险。本文描述了一种用于远程操作员的非侵入性生物力学特征捕获方法,用于试验新型人为错误率估计器,在未来的工作中,这些估计器旨在通过向操作员提供行为和姿势反馈来提高操作安全性。在英国原子能管理局核聚变研究与技术中心使用MASCOT远程操作系统进行了操作员监测研究;在观察期间,给操作员安排了受控任务来完成。在现有的车辆驾驶员意图估计和机器人手术操作员分析工作的基础上,我们使用商用深度相机进行三维点云数据捕获,以估计操作员的骨骼姿势。总共观察并记录了14名操作员,总时长约8小时,每人都完成了一项基线任务和一项旨在引发可检测但安全碰撞的任务。估计了骨骼姿势,记录了碰撞统计数据,并进行了基于问卷的心理评估,从而提供了一个定性和定量数据的数据库。然后,我们通过使用统计和机器学习回归技术(支持向量回归)来估计碰撞率,对数据驱动分析进行了试验。我们还对所选特征进行并展示了输入变量敏感性分析。
Front Robot AI. 2024-1-9
Front Comput Neurosci. 2020-12-21
Cochrane Database Syst Rev. 2022-2-1
Zhonghua Jie He He Hu Xi Za Zhi. 2024-2-12
Front Neurosci. 2022-6-10
IEEE Trans Haptics. 2020
ISA Trans. 2019-5-14
Sci Am. 1989-12
Int J Med Robot. 2018-4
Annu Int Conf IEEE Eng Med Biol Soc. 2009
Ergonomics. 2008-3
Anal Chim Acta. 2007-7-9
J Appl Physiol (1985). 2006-2
J Manipulative Physiol Ther. 1999