Suppr超能文献

利用支持向量机进行伸手和投掷动作分析以早期诊断自闭症

Reach and throw movement analysis with support vector machines in early diagnosis of autism.

作者信息

Perego Paolo, Forti Sara, Crippa Alessandro, Valli Angela, Reni Gianluigi

机构信息

Bioengineering Lab of I.R.C.C.S. E. Medea.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:2555-8. doi: 10.1109/IEMBS.2009.5335096.

Abstract

Movement disturbances play an intrinsic part in autism. Upper limb movements like reach-and-throw seem to be helpful in early identification of children affected by autism. Nevertheless few works investigate the application of classifying methods to upper limb movements. In this study we used a machine learning approach Support Vector Machine (SVM) for identifying peculiar features in reach-and-throw movements. 10 pre-scholar age children with autism and 10 control subjects performing the same exercises were analyzed. The SVM algorithm proved to be able to separate the two groups: accuracy of 100% was achieved with a soft margin algorithm, and accuracy of 92.5% with a more conservative one. These results were obtained with a radial basis function kernel, suggesting that a non-linear analysis is possibly required.

摘要

运动障碍在自闭症中起着内在作用。像伸手投掷这样的上肢运动似乎有助于早期识别受自闭症影响的儿童。然而,很少有研究探讨分类方法在上肢运动中的应用。在本研究中,我们使用机器学习方法支持向量机(SVM)来识别伸手投掷运动中的特殊特征。对10名患有自闭症的学龄前儿童和10名进行相同练习的对照受试者进行了分析。SVM算法被证明能够区分这两组:使用软间隔算法时准确率达到100%,使用更保守的算法时准确率为92.5%。这些结果是通过径向基函数核获得的,这表明可能需要进行非线性分析。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验