文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Supramolecular host-guest nanosystems for overcoming cancer drug resistance.

作者信息

Wu Sha, Yan Miaomiao, Liang Minghao, Yang Wenzhi, Chen Jingyu, Zhou Jiong

机构信息

Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China.

Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, Guangdong, China.

出版信息

Cancer Drug Resist. 2023 Nov 22;6(4):805-827. doi: 10.20517/cdr.2023.77. eCollection 2023.


DOI:10.20517/cdr.2023.77
PMID:38263983
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10804391/
Abstract

Cancer drug resistance has become one of the main challenges for the failure of chemotherapy, greatly limiting the selection and use of anticancer drugs and dashing the hopes of cancer patients. The emergence of supramolecular host-guest nanosystems has brought the field of supramolecular chemistry into the nanoworld, providing a potential solution to this challenge. Compared with conventional chemotherapeutic platforms, supramolecular host-guest nanosystems can reverse cancer drug resistance by increasing drug uptake, reducing drug efflux, activating drugs, and inhibiting DNA repair. Herein, we summarize the research progress of supramolecular host-guest nanosystems for overcoming cancer drug resistance and discuss the future research direction in this field. It is hoped that this review will provide more positive references for overcoming cancer drug resistance and promoting the development of supramolecular host-guest nanosystems.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cd6/10804391/c3125cc7086d/cdr-6-4-805.fig.13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cd6/10804391/67bf0b1db6d4/cdr-6-4-805.scheme.1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cd6/10804391/0162102432bd/cdr-6-4-805.fig.1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cd6/10804391/72b4420d975e/cdr-6-4-805.fig.2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cd6/10804391/846ce1e2f88b/cdr-6-4-805.fig.3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cd6/10804391/f8f1f8e93bb8/cdr-6-4-805.fig.4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cd6/10804391/902582f7c53d/cdr-6-4-805.fig.5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cd6/10804391/ab9a46fb6357/cdr-6-4-805.fig.6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cd6/10804391/b485e1fbc113/cdr-6-4-805.fig.7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cd6/10804391/9d092379741c/cdr-6-4-805.fig.8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cd6/10804391/4d5e80ad6eec/cdr-6-4-805.fig.9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cd6/10804391/180e6ac43aed/cdr-6-4-805.fig.11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cd6/10804391/8895a2d2ca3d/cdr-6-4-805.fig.12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cd6/10804391/c3125cc7086d/cdr-6-4-805.fig.13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cd6/10804391/67bf0b1db6d4/cdr-6-4-805.scheme.1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cd6/10804391/0162102432bd/cdr-6-4-805.fig.1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cd6/10804391/72b4420d975e/cdr-6-4-805.fig.2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cd6/10804391/846ce1e2f88b/cdr-6-4-805.fig.3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cd6/10804391/f8f1f8e93bb8/cdr-6-4-805.fig.4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cd6/10804391/902582f7c53d/cdr-6-4-805.fig.5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cd6/10804391/ab9a46fb6357/cdr-6-4-805.fig.6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cd6/10804391/b485e1fbc113/cdr-6-4-805.fig.7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cd6/10804391/9d092379741c/cdr-6-4-805.fig.8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cd6/10804391/4d5e80ad6eec/cdr-6-4-805.fig.9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cd6/10804391/180e6ac43aed/cdr-6-4-805.fig.11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cd6/10804391/8895a2d2ca3d/cdr-6-4-805.fig.12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cd6/10804391/c3125cc7086d/cdr-6-4-805.fig.13.jpg

相似文献

[1]
Supramolecular host-guest nanosystems for overcoming cancer drug resistance.

Cancer Drug Resist. 2023-11-22

[2]
Recent Progress of Supramolecular Chemotherapy Based on Host-Guest Interactions.

Adv Mater. 2024-5

[3]
Supramolecular chemistry at interfaces: host-guest interactions for fabricating multifunctional biointerfaces.

Acc Chem Res. 2014-4-25

[4]
Host-guest supramolecular nanosystems for cancer diagnostics and therapeutics.

Adv Mater. 2013-6-25

[5]
Cyclodextrin-based host-guest supramolecular nanoparticles for delivery: from design to applications.

Acc Chem Res. 2014-5-29

[6]
Cucurbit[n]uril-Based Microcapsules Self-Assembled within Microfluidic Droplets: A Versatile Approach for Supramolecular Architectures and Materials.

Acc Chem Res. 2017-1-11

[7]
Supramolecular polymers constructed from macrocycle-based host-guest molecular recognition motifs.

Acc Chem Res. 2014-3-31

[8]
Supramolecular chemotherapy based on host-guest molecular recognition: a novel strategy in the battle against cancer with a bright future.

Chem Soc Rev. 2017-11-13

[9]
Host-Guest Chemistry in Supramolecular Theranostics.

Theranostics. 2019-5-15

[10]
Stimuli-responsive host-guest systems based on the recognition of cryptands by organic guests.

Acc Chem Res. 2014-5-8

引用本文的文献

[1]
Discovery of vitexin as a novel VDR agonist that mitigates the transition from chronic intestinal inflammation to colorectal cancer.

Mol Cancer. 2024-9-13

[2]
Uterine Endometrium Microbiome in Women with Repeated Implantation Failure Complicated by Endometriosis.

J Clin Med. 2024-8-7

[3]
Cucurbit[8]uril-based supramolecular theranostics.

J Nanobiotechnology. 2024-5-9

本文引用的文献

[1]
Mitochondria in colorectal cancer stem cells - a target in drug resistance.

Cancer Drug Resist. 2023-5-6

[2]
Recent advances in access to overcome cancer drug resistance by nanocarrier drug delivery system.

Cancer Drug Resist. 2023-6-20

[3]
Review of 5-FU resistance mechanisms in colorectal cancer: clinical significance of attenuated on-target effects.

Cancer Drug Resist. 2023-4-29

[4]
Nanozyme for tumor therapy: Surface modification matters.

Exploration (Beijing). 2021-9-1

[5]
Dendrimeric nanosystem consistently circumvents heterogeneous drug response and resistance in pancreatic cancer.

Exploration (Beijing). 2021-8-27

[6]
Biphenarenes, Versatile Synthetic Macrocycles for Supramolecular Chemistry.

Molecules. 2023-5-29

[7]
Supramolecular Chemotherapy with Cucurbit[]urils as Encapsulating Hosts.

ACS Appl Bio Mater. 2023-6-19

[8]
Supramolecular nanoprodrug based on a chloride channel blocker and glycosylated pillar[5]arenes for targeted chemoresistance cancer therapy.

Chem Commun (Camb). 2023-3-23

[9]
Enhanced delivery of quercetin and doxorubicin using β-cyclodextrin polymer to overcome P-glycoprotein mediated multidrug resistance.

Int J Pharm. 2023-3-25

[10]
Cucurbituril curiosities.

Nat Chem. 2023-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索