Suppr超能文献

通过与过渡金属二硫属化物形成超晶格来增强用于锂离子电池的石墨烯电极的计算研究。

Computational Study of the Enhancement of Graphene Electrodes for Use in Li-Ion Batteries via Forming Superlattices with Transition Metal Dichalcogenides.

作者信息

Baker Edward Allery David, Price Conor Jason, Hepplestone Steven Paul

机构信息

Department of Physics, University of Exeter, Exeter EX4 4QL, U.K.

出版信息

J Phys Chem C Nanomater Interfaces. 2024 Jan 4;128(2):723-731. doi: 10.1021/acs.jpcc.3c06300. eCollection 2024 Jan 18.

Abstract

In our study, we examined nine transition metal dichalcogenide (TMDC)-graphene superlattices as potential Li-ion intercalation electrodes. We determined their voltages, with ScS-graphene in T- and R-phases showing the highest at around 3 V, while the others ranged from 0 to 1.5 V. Most superlattices exhibited minimal volumetric expansion (5 to 10%), similar to NMC (8%), except for SnS-T and NiS-T, which expanded up to nearly 20%. We evaluated their capacities using a stability metric, , and found that ScS-T, ScS-R, and TiS-T could be intercalated up to two Li ions per MX unit without decomposing to LiS, yielding capacities of 306.77 mA h/g for both ScS phases and 310.84 mA h/g for TiS-T, roughly equivalent to LiC. MoS-T could accept Li up to a limit of = 15/16 in LiMoSC, corresponding to a capacity of 121.29 mA h/g (equivalent to LiC). Examining the influence of graphene layers on MoS-T, we observed a voltage decrease and an initial decrease before effectively flat lining, which is due to charge donation to the middle graphene layer, reducing the electron concentration near the TMDC layer. As graphene layers increased, overall volume expansion decreased with Li intercalation, which is attributed to the in-plane expansion changing. Our results underscore the potential of TMDC-graphene superlattices as Li-ion intercalation electrodes, offering low volumetric expansions, high capacities, and a wide voltage range. These superlattices all show an increase in the capacity of the graphene.

摘要

在我们的研究中,我们考察了九种过渡金属二硫属化物(TMDC)-石墨烯超晶格作为潜在的锂离子插层电极。我们测定了它们的电压,其中处于T相和R相的ScS-石墨烯显示出最高电压,约为3 V,而其他超晶格的电压范围为0至1.5 V。除了SnS-T和NiS-T的体积膨胀高达近20%外,大多数超晶格的体积膨胀极小(5%至10%),与NMC(8%)相似。我们使用稳定性指标评估了它们的容量,发现ScS-T、ScS-R和TiS-T每个MX单元最多可插入两个锂离子而不会分解为LiS,ScS的两个相的容量为306.77 mA h/g,TiS-T的容量为310.84 mA h/g,大致相当于LiC。MoS-T在LiMoSC中最多可接受Li至 = 15/16的极限,对应容量为121.29 mA h/g(相当于LiC)。研究石墨烯层对MoS-T的影响时,我们观察到在有效趋于平稳之前电压下降且初始 下降,这是由于电荷捐赠给中间的石墨烯层,降低了TMDC层附近的电子浓度。随着石墨烯层数增加,锂嵌入时的总体积膨胀减小,这归因于面内膨胀的变化。我们的结果强调了TMDC-石墨烯超晶格作为锂离子插层电极的潜力,具有低体积膨胀、高容量和宽电压范围。这些超晶格均显示出石墨烯容量的增加。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3cd/10801692/6cd6ffb302f4/jp3c06300_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验