Suppr超能文献

机器学习衍生的周期长度变异性指标可预测植入式心脏复律除颤器接受者的自发性终止室性心动过速。

Machine learning-derived cycle length variability metrics predict spontaneously terminating ventricular tachycardia in implantable cardioverter defibrillator recipients.

作者信息

Sau Arunashis, Ahmed Amar, Chen Jun Yu, Pastika Libor, Wright Ian, Li Xinyang, Handa Balvinder, Qureshi Norman, Koa-Wing Michael, Keene Daniel, Malcolme-Lawes Louisa, Varnava Amanda, Linton Nicholas W F, Lim Phang Boon, Lefroy David, Kanagaratnam Prapa, Peters Nicholas S, Whinnett Zachary, Ng Fu Siong

机构信息

National Heart and Lung Institute, Hammersmith Campus, Imperial College London, 72 Du Cane Road, W12 0HS, London, UK.

Department of Cardiology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, 72 Du Cane Road, W12 0HS, London, UK.

出版信息

Eur Heart J Digit Health. 2023 Oct 24;5(1):50-59. doi: 10.1093/ehjdh/ztad064. eCollection 2024 Jan.

Abstract

AIMS

Implantable cardioverter defibrillator (ICD) therapies have been associated with increased mortality and should be minimized when safe to do so. We hypothesized that machine learning-derived ventricular tachycardia (VT) cycle length (CL) variability metrics could be used to discriminate between sustained and spontaneously terminating VT.

METHODS AND RESULTS

In this single-centre retrospective study, we analysed data from 69 VT episodes stored on ICDs from 27 patients (36 spontaneously terminating VT, 33 sustained VT). Several VT CL parameters including heart rate variability metrics were calculated. Additionally, a first order auto-regression model was fitted using the first 10 CLs. Using features derived from the first 10 CLs, a random forest classifier was used to predict VT termination. Sustained VT episodes had more stable CLs. Using data from the first 10 CLs only, there was greater CL variability in the spontaneously terminating episodes (mean of standard deviation of first 10 CLs: 20.1 ± 8.9 vs. 11.5 ± 7.8 ms, < 0.0001). The auto-regression coefficient was significantly greater in spontaneously terminating episodes (mean auto-regression coefficient 0.39 ± 0.32 vs. 0.14 ± 0.39, < 0.005). A random forest classifier with six features yielded an accuracy of 0.77 (95% confidence interval 0.67 to 0.87) for prediction of VT termination.

CONCLUSION

Ventricular tachycardia CL variability and instability are associated with spontaneously terminating VT and can be used to predict spontaneous VT termination. Given the harmful effects of unnecessary ICD shocks, this machine learning model could be incorporated into ICD algorithms to defer therapies for episodes of VT that are likely to self-terminate.

摘要

目的

植入式心律转复除颤器(ICD)治疗与死亡率增加相关,在安全可行的情况下应尽量减少使用。我们假设,通过机器学习得出的室性心动过速(VT)周期长度(CL)变异性指标可用于区分持续性VT和自发终止的VT。

方法与结果

在这项单中心回顾性研究中,我们分析了来自27例患者ICD中存储的69次VT发作的数据(36次自发终止的VT,33次持续性VT)。计算了包括心率变异性指标在内的多个VT CL参数。此外,使用前10个CL拟合一阶自回归模型。利用从前10个CL得出的特征,使用随机森林分类器预测VT终止。持续性VT发作的CL更稳定。仅使用前10个CL的数据,自发终止发作的CL变异性更大(前10个CL标准差的平均值:20.1±8.9 vs. 11.5±7.8 ms,<0.0001)。自发终止发作的自回归系数显著更高(平均自回归系数0.39±0.32 vs. 0.14±0.39,<0.005)。具有六个特征的随机森林分类器预测VT终止的准确率为0.77(95%置信区间0.67至0.87)。

结论

室性心动过速的CL变异性和不稳定性与自发终止的VT相关,可用于预测VT的自发终止。鉴于不必要的ICD电击的有害影响,这种机器学习模型可纳入ICD算法,以推迟对可能自行终止的VT发作的治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cabe/10802825/75528c685e64/ztad064_ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验