文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

载 C7-3 肽壳聚糖纳米粒对多重耐药菌的作用。

Effect of C7-3-Peptide-Loaded Chitosan Nanoparticles Against Multi-Drug-Resistant .

机构信息

Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.

Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.

出版信息

Int J Nanomedicine. 2024 Jan 19;19:609-631. doi: 10.2147/IJN.S445737. eCollection 2024.


DOI:10.2147/IJN.S445737
PMID:38264736
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10804975/
Abstract

INTRODUCTION: The emergence of -resistant strains represents one of the most urgent global threats. In this regard, C7-3 peptide is one of the anti-virulence therapies that has demonstrated promising anti-gonococcal activity. Accordingly, this research aimed to formulate C7-3 peptide and its derivatives in chitosan nanoparticles. METHODS: The peptide loaded chitosan nanoparticles were prepared using ion gelation method, and their physicochemical characteristics were investigated. The anti-gonococcal and antibiofilm activity of prepared NPs was assessed, and their cytotoxicity in human ovarian cells was evaluated. RESULTS: All prepared NPs were optimized for the smallest particle size of 136.9 to 168.3 nm. The EE% of C7-3, C7-3m1, and C7-3m2 CNPs reached 90.2, 92.5, and 91.8%, respectively. An in vitro release study demonstrated a continuous sustained-release pattern of C7-3 peptide from NPs. The SDS-PAGE assay confirmed the integrity of C7-3 peptide after the fabrication process. When comparing each peptide alone, the generated NPs demonstrated higher anti-gonococcal and anti-biofilm effectiveness against standard and resistant bacterial strains under anaerobic conditions. The cytotoxicity experiments revealed the cytocompatibility of NPs in HeLa cell lines. Given the advantages of enhanced anti-gonococcal activity of the C7-3 peptide and its derivatives when loaded with CNPs, as well as the antimicrobial properties of chitosan NPs, the reported NPs have great potential in the treatment of gonococcal infection.

摘要

简介:耐药菌株的出现是全球最紧迫的威胁之一。在这方面,C7-3 肽是一种抗毒力治疗方法,已显示出有希望的抗淋病奈瑟菌活性。因此,本研究旨在将 C7-3 肽及其衍生物制成壳聚糖纳米粒。

方法:采用离子凝胶法制备载肽壳聚糖纳米粒,并对其理化性质进行研究。评价了制备的 NP 的抗淋球菌和抗生物膜活性,并评估了其在人卵巢细胞中的细胞毒性。

结果:所有制备的 NP 的粒径均优化为 136.9 至 168.3nm 的最小粒径。C7-3、C7-3m1 和 C7-3m2 CNPs 的 EE%分别达到 90.2%、92.5%和 91.8%。体外释放研究表明 C7-3 肽从 NPs 中呈持续缓释模式。SDS-PAGE 分析证实 C7-3 肽在制备过程后保持完整。当比较每种肽单独使用时,生成的 NPs 在厌氧条件下对标准和耐药细菌株显示出更高的抗淋球菌和抗生物膜效果。细胞毒性实验表明 NPs 在 HeLa 细胞系中具有细胞相容性。鉴于 C7-3 肽及其衍生物在负载 CNPs 时增强的抗淋球菌活性以及壳聚糖 NPs 的抗菌特性,所报道的 NPs 在治疗淋病感染方面具有很大的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb77/10804975/c3c641af9a15/IJN-19-609-g0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb77/10804975/6da504b37708/IJN-19-609-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb77/10804975/248db2ba6976/IJN-19-609-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb77/10804975/b6a1c908fb1e/IJN-19-609-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb77/10804975/d90a51ccab6c/IJN-19-609-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb77/10804975/9cee782430ef/IJN-19-609-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb77/10804975/ecf3dd2cdbcb/IJN-19-609-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb77/10804975/76297b121c95/IJN-19-609-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb77/10804975/fb834cc90210/IJN-19-609-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb77/10804975/70d770e7856b/IJN-19-609-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb77/10804975/a881fdfca42b/IJN-19-609-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb77/10804975/78c771e72de0/IJN-19-609-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb77/10804975/081614c81733/IJN-19-609-g0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb77/10804975/cf403eabbb14/IJN-19-609-g0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb77/10804975/5b156dbed3c6/IJN-19-609-g0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb77/10804975/c3c641af9a15/IJN-19-609-g0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb77/10804975/6da504b37708/IJN-19-609-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb77/10804975/248db2ba6976/IJN-19-609-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb77/10804975/b6a1c908fb1e/IJN-19-609-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb77/10804975/d90a51ccab6c/IJN-19-609-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb77/10804975/9cee782430ef/IJN-19-609-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb77/10804975/ecf3dd2cdbcb/IJN-19-609-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb77/10804975/76297b121c95/IJN-19-609-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb77/10804975/fb834cc90210/IJN-19-609-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb77/10804975/70d770e7856b/IJN-19-609-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb77/10804975/a881fdfca42b/IJN-19-609-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb77/10804975/78c771e72de0/IJN-19-609-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb77/10804975/081614c81733/IJN-19-609-g0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb77/10804975/cf403eabbb14/IJN-19-609-g0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb77/10804975/5b156dbed3c6/IJN-19-609-g0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb77/10804975/c3c641af9a15/IJN-19-609-g0015.jpg

相似文献

[1]
Effect of C7-3-Peptide-Loaded Chitosan Nanoparticles Against Multi-Drug-Resistant .

Int J Nanomedicine. 2024

[2]
Antibacterial Activity of Chitosan Nanoparticles Against Pathogenic .

Int J Nanomedicine. 2020-10-13

[3]
Peptide Inhibitors Targeting the Neisseria gonorrhoeae Pivotal Anaerobic Respiration Factor AniA.

Antimicrob Agents Chemother. 2017-7-25

[4]
Delivery LL37 by chitosan nanoparticles for enhanced antibacterial and antibiofilm efficacy.

Carbohydr Polym. 2022-9-1

[5]
Fabrication and antimicrobial properties of novel meropenem-honey encapsulated chitosan nanoparticles against multiresistant and biofilm-forming Staphylococcus aureus as a new antimicrobial agent.

Vet Med Sci. 2024-5

[6]
Chitosan loaded RNA polymerase inhibitor nanoparticles increased attenuation in toxin release from .

Saudi Pharm J. 2023-1

[7]
A New Amphotericin B-loaded Trimethyl Chitosan Nanoparticles as a Drug Delivery System and Antifungal Activity on Biofilm.

Arch Razi Inst. 2021

[8]
Antimicrobial Peptide Octominin-Encapsulated Chitosan Nanoparticles Enhanced Antifungal and Antibacterial Activities.

Int J Mol Sci. 2022-12-14

[9]
Exploring Endolysin-Loaded Alginate-Chitosan Nanoparticles as Future Remedy for Staphylococcal Infections.

AAPS PharmSciTech. 2020-8-13

[10]
Enhanced antibacterial activity of uniform and stable chitosan nanoparticles containing metronidazole against anaerobic bacterium of Bacteroides fragilis.

Colloids Surf B Biointerfaces. 2021-6

引用本文的文献

[1]
Advances in the Role of Antimicrobial Peptides in the Management of Sexually Transmitted Infections.

J Clin Lab Anal. 2025-6

[2]
Advancing Nanotechnology: Targeting Biofilm-Forming Bacteria with Antimicrobial Peptides.

BME Front. 2025-3-4

本文引用的文献

[1]
Antimicrobial peptides grafted onto the surface of N-acetylcysteine-chitosan nanoparticles can revitalize drugs against clinical isolates of Mycobacterium tuberculosis.

Carbohydr Polym. 2024-1-1

[2]
Antimicrobial Peptide Octominin-Encapsulated Chitosan Nanoparticles Enhanced Antifungal and Antibacterial Activities.

Int J Mol Sci. 2022-12-14

[3]
Capsule Independent Antimicrobial Activity Induced by Nanochitosan against .

Polymers (Basel). 2021-8-30

[4]
Sexually Transmitted Infections-Update on Drug Treatment and Vaccine Development.

Medicines (Basel). 2021-2-5

[5]
The role of vaccines in combatting antimicrobial resistance.

Nat Rev Microbiol. 2021-5

[6]
National Estimates of Healthcare Costs Associated With Multidrug-Resistant Bacterial Infections Among Hospitalized Patients in the United States.

Clin Infect Dis. 2021-1-29

[7]
Anti-Virulence Therapeutic Approaches for .

Antibiotics (Basel). 2021-1-21

[8]
A novel nanohybrid antimicrobial based on chitosan nanoparticles and antimicrobial peptide microcin J25 with low toxicity.

Carbohydr Polym. 2021-2-1

[9]
Antibacterial Activity of Chitosan Nanoparticles Against Pathogenic .

Int J Nanomedicine. 2020-10-13

[10]
Chitosan and their derivatives: Antibiofilm drugs against pathogenic bacteria.

Colloids Surf B Biointerfaces. 2019-11-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索