Suppr超能文献

使用影像组学模型预测库欣病的延迟缓解:一项多中心研究。

Predicting delayed remission in Cushing's disease using radiomics models: a multi-center study.

作者信息

Zhang Wentai, Zhang Dewei, Liu Shaocheng, Wang He, Liu Xiaohai, Dai Congxin, Fang Yi, Fan Yanghua, Wei Zhenqing, Feng Ming, Wang Renzhi

机构信息

Department of Thoracic Surgery, Peking University First Hospital, Beijing, China.

Department of Neurosurgery, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, Beijing, China.

出版信息

Front Oncol. 2024 Jan 9;13:1218897. doi: 10.3389/fonc.2023.1218897. eCollection 2023.

Abstract

PURPOSE

No multi-center radiomics models have been built to predict delayed remission (DR) after transsphenoidal surgery (TSS) in Cushing's disease (CD). The present study aims to build clinical and radiomics models based on data from three centers to predict DR after TSS in CD.

METHODS

A total of 122 CD patients from Peking Union Medical College Hospital, Xuanwu Hospital, and Fuzhou General Hospital were enrolled between January 2000 and January 2019. The T1-weighted gadolinium-enhanced MRI images and clinical data were used as inputs to build clinical and radiomics models. The regions of interest (ROI) of MRI images were automatically defined by a deep learning algorithm developed by our team. The area under the curve (AUC) of receiver operating characteristic (ROC) curves was used to evaluate the performance of the models. In total, 10 machine learning algorithms were used to construct models.

RESULTS

The overall DR rate is 44.3% (54/122). According to multivariate Logistic regression analysis, patients with higher BMI and lower postoperative cortisol levels are more likely to achieve a higher rate of delayed remission. Among the 10 models, XGBoost achieved the best performance among all models in both clinical and radiomics models with AUC values of 0.767 and 0.819 respectively. The results from SHAP value and LIME algorithms revealed that postoperative cortisol level (PoC) and BMI were the most important features associated with DR.

CONCLUSION

Radiomics models can be built as an effective noninvasive method to predict DR and might be useful in assisting neurosurgeons in making therapeutic plans after TSS for CD patients. These results are preliminary and further validation in a larger patient sample is needed.

摘要

目的

尚未建立多中心的影像组学模型来预测库欣病(CD)经蝶窦手术(TSS)后的延迟缓解(DR)。本研究旨在基于三个中心的数据建立临床和影像组学模型,以预测CD患者TSS后的DR。

方法

2000年1月至2019年1月期间,共纳入了来自北京协和医院、宣武医院和福州总医院的122例CD患者。将T1加权钆增强MRI图像和临床数据用作构建临床和影像组学模型的输入。MRI图像的感兴趣区域(ROI)由我们团队开发的深度学习算法自动定义。采用受试者操作特征(ROC)曲线下面积(AUC)来评估模型的性能。总共使用了10种机器学习算法来构建模型。

结果

总体DR率为44.3%(54/122)。根据多因素Logistic回归分析,BMI较高且术后皮质醇水平较低的患者更有可能获得较高的延迟缓解率。在这10个模型中,XGBoost在所有模型中表现最佳,在临床和影像组学模型中的AUC值分别为0.767和0.819。SHAP值和LIME算法的结果显示,术后皮质醇水平(PoC)和BMI是与DR相关的最重要特征。

结论

影像组学模型可作为一种有效的非侵入性方法来预测DR,可能有助于神经外科医生为CD患者制定TSS后的治疗方案。这些结果是初步的,需要在更大的患者样本中进行进一步验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63e9/10803608/3c623ac1f32c/fonc-13-1218897-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验