Ciaparrone Gioele, Pirone Daniele, Fiore Pierpaolo, Xin Lu, Xiao Wen, Li Xiaoping, Bardozzo Francesco, Bianco Vittorio, Miccio Lisa, Pan Feng, Memmolo Pasquale, Tagliaferri Roberto, Ferraro Pietro
Neurone Lab, Department of Management and Innovation Systems (DISA-MIS), University of Salerno, Fisciano, Italy.
CNR - Institute of Applied Sciences and Intelligent Systems "Eduardo Caianiello", Pozzuoli, Italy.
Lab Chip. 2024 Feb 13;24(4):924-932. doi: 10.1039/d3lc00385j.
Nowadays, label-free imaging flow cytometry at the single-cell level is considered the stepforward lab-on-a-chip technology to address challenges in clinical diagnostics, biology, life sciences and healthcare. In this framework, digital holography in microscopy promises to be a powerful imaging modality thanks to its multi-refocusing and label-free quantitative phase imaging capabilities, along with the encoding of the highest information content within the imaged samples. Moreover, the recent achievements of new data analysis tools for cell classification based on deep/machine learning, combined with holographic imaging, are urging these systems toward the effective implementation of point of care devices. However, the generalization capabilities of learning-based models may be limited from biases caused by data obtained from other holographic imaging settings and/or different processing approaches. In this paper, we propose a combination of a Mask R-CNN to detect the cells, a convolutional auto-encoder, used to the image feature extraction and operating on unlabelled data, thus overcoming the bias due to data coming from different experimental settings, and a feedforward neural network for single cell classification, that operates on the above extracted features. We demonstrate the proposed approach in the challenging classification task related to the identification of drug-resistant endometrial cancer cells.
如今,单细胞水平的无标记成像流式细胞术被认为是芯片实验室技术向前迈出的一步,以应对临床诊断、生物学、生命科学和医疗保健领域的挑战。在此框架下,显微镜中的数字全息术有望成为一种强大的成像方式,这得益于其多重重新聚焦和无标记定量相位成像能力,以及在成像样本中编码的最高信息含量。此外,基于深度学习/机器学习的细胞分类新数据分析工具的最新成果,与全息成像相结合,正促使这些系统朝着有效实施即时护理设备的方向发展。然而,基于学习的模型的泛化能力可能会受到来自其他全息成像设置和/或不同处理方法的数据所导致的偏差的限制。在本文中,我们提出了一种组合方法,包括用于检测细胞的Mask R-CNN、用于图像特征提取并对未标记数据进行操作的卷积自动编码器(从而克服来自不同实验设置的数据所导致的偏差),以及用于单细胞分类的前馈神经网络,该网络对上述提取的特征进行操作。我们在与识别耐药子宫内膜癌细胞相关的具有挑战性的分类任务中展示了所提出的方法。