Section for Oral Ecology, Cariology, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark.
Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark.
Appl Environ Microbiol. 2024 Feb 21;90(2):e0200723. doi: 10.1128/aem.02007-23. Epub 2024 Jan 24.
Bacterial biofilms have a complex and heterogeneous three-dimensional architecture that is characterized by chemically and structurally distinct microenvironments. Confocal microscopy-based pH ratiometry and fluorescence lectin-binding analysis (FLBA) are well-established methods to characterize pH developments and the carbohydrate matrix architecture of biofilms at the microscale. Here, we developed a combined analysis, pH-FLBA, to concomitantly map biofilm pH and the distribution of matrix carbohydrates in bacterial biofilms while preserving the biofilm microarchitecture. As a proof of principle, the relationship between pH and the presence of galactose- and fucose-containing matrix components was investigated in dental biofilms grown with and without sucrose. The pH response to a sucrose challenge was monitored in different areas at the biofilm base using the ratiometric pH-sensitive dye C-SNARF-4. Thereafter, the fucose- and galactose-specific fluorescently labeled lectins lectin (AAL) and agglutinin G (MNA-G) were used to visualize carbohydrate matrix components in the same biofilm areas and their immediate surroundings. Sucrose during growth significantly decreased biofilm pH ( < 0.05) and increased the amounts of both MNA-G- and AAL-targeted matrix carbohydrates ( < 0.05). Moreover, it modulated the biofilm composition towards a less diverse community dominated by streptococci, as determined by 16S rRNA gene sequencing. Altogether, these results suggest that the production of galactose- and fucose-containing matrix carbohydrates is related to streptococcal metabolism and, thereby, pH profiles in dental biofilms. In conclusion, pH-FLBA using lectins with different carbohydrate specificities is a useful method to investigate the association between biofilm pH and the complex carbohydrate architecture of bacterial biofilms.IMPORTANCEBiofilm pH is a key regulating factor in several biological and biochemical processes in environmental, industrial, and medical biofilms. At the microscale, microbial biofilms are characterized by steep pH gradients and an extracellular matrix rich in carbohydrate components with diffusion-modifying properties that contribute to bacterial acid-base metabolism. Here, we propose a combined analysis of pH ratiometry and fluorescence lectin-binding analysis, pH-FLBA, to concomitantly investigate the matrix architecture and pH developments in microbial biofilms, using complex saliva-derived biofilms as an example. Spatiotemporal changes in biofilm pH are monitored non-invasively over time by pH ratiometry, while FLBA with lectins of different carbohydrate specificities allows mapping the distribution of multiple relevant matrix components in the same biofilm areas. As the biofilm structure is preserved, pH-FLBA can be used to investigate the relationship between the biofilm matrix architecture and biofilm pH in complex multispecies biofilms.
细菌生物膜具有复杂且异质的三维结构,其特点是具有化学和结构上明显不同的微环境。基于共焦显微镜的 pH 比率法和荧光凝集素结合分析(FLBA)是用于在微观尺度上表征生物膜 pH 发展和碳水化合物基质结构的成熟方法。在这里,我们开发了一种组合分析 pH-FLBA,以同时绘制细菌生物膜中的生物膜 pH 和基质碳水化合物的分布,同时保留生物膜微结构。作为原理验证,研究了在有和没有蔗糖的情况下生长的牙生物膜中 pH 与含半乳糖和岩藻糖的基质成分的存在之间的关系。使用比率敏感的 pH 染料 C-SNARF-4 在生物膜底部的不同区域监测对蔗糖挑战的 pH 响应。此后,使用岩藻糖和半乳糖特异性荧光标记的凝集素 lectin (AAL) 和 agglutinin G (MNA-G) 在相同的生物膜区域及其周围可视化碳水化合物基质成分。生长过程中的蔗糖显著降低了生物膜 pH(<0.05)并增加了 MNA-G-和 AAL 靶向的基质碳水化合物的量(<0.05)。此外,正如 16S rRNA 基因测序所确定的那样,它将生物膜组成调节为以链球菌为主的多样性较小的群落。总之,这些结果表明,含半乳糖和岩藻糖的基质碳水化合物的产生与链球菌的新陈代谢有关,从而与牙生物膜中的 pH 谱有关。总之,使用具有不同碳水化合物特异性的凝集素进行 pH-FLBA 是一种有用的方法,可以研究生物膜 pH 与细菌生物膜复杂碳水化合物结构之间的关联。
重要性
生物膜 pH 是环境、工业和医学生物膜中几种生物和生化过程的关键调节因素。在微观尺度上,微生物生物膜的特点是存在陡峭的 pH 梯度和富含碳水化合物成分的细胞外基质,这些成分具有扩散修饰特性,有助于细菌酸碱代谢。在这里,我们提出了一种 pH 比率法和荧光凝集素结合分析(pH-FLBA)的组合分析方法,以同时研究微生物生物膜的基质结构和 pH 发展,以复杂的唾液衍生生物膜为例。通过 pH 比率法非侵入性地随时间监测生物膜 pH 的时空变化,而使用不同碳水化合物特异性的凝集素进行 FLBA 则允许在同一生物膜区域中绘制多个相关基质成分的分布。由于保留了生物膜结构,因此可以使用 pH-FLBA 来研究复杂多物种生物膜中生物膜基质结构与生物膜 pH 之间的关系。