Department of Critical Care Medicine, National Clinical Research Center for Genetic Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
Department of Medicine Oncology, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Changde, China.
Neurol Sci. 2024 Jun;45(6):2681-2696. doi: 10.1007/s10072-023-07299-2. Epub 2024 Jan 24.
Parkinson's disease (PD) ranks as the second most prevalent neurodegenerative disorder globally, and its incidence is rapidly rising. The diagnosis of PD relies on clinical characteristics. Although current treatments aim to alleviate symptoms, they do not effectively halt the disease's progression. Early detection and intervention hold immense importance. This study aimed to establish a new PD diagnostic model.
Data from a public database were adopted for the construction and validation of a PD diagnostic model with random forest and artificial neural network models. The CIBERSORT platform was applied for the evaluation of immune cell infiltration in PD. Quantitative real-time PCR was performed to verify the accuracy and reliability of the bioinformatics analysis results.
Leveraging existing gene expression data from the Gene Expression Omnibus (GEO) database, we sifted through differentially expressed genes (DEGs) in PD and identified 30 crucial genes through a random forest classifier. Furthermore, we successfully designed a novel PD diagnostic model using an artificial neural network and verified its diagnostic efficacy using publicly available datasets. Our research also suggests that mast cells may play a significant role in the onset and progression of PD.
This work developed a new PD diagnostic model with machine learning techniques and suggested the immune cells as a potential target for PD therapy.
帕金森病(PD)是全球第二大常见的神经退行性疾病,其发病率正在迅速上升。PD 的诊断依赖于临床特征。尽管目前的治疗方法旨在缓解症状,但并不能有效阻止疾病的进展。早期发现和干预至关重要。本研究旨在建立一种新的 PD 诊断模型。
本研究采用随机森林和人工神经网络模型,利用公共数据库中的数据构建和验证 PD 诊断模型。利用 CIBERSORT 平台评估 PD 中的免疫细胞浸润。采用定量实时 PCR 验证生物信息学分析结果的准确性和可靠性。
本研究利用基因表达综合数据库(GEO)中的现有基因表达数据,筛选 PD 中的差异表达基因(DEGs),并通过随机森林分类器鉴定出 30 个关键基因。此外,我们还成功地使用人工神经网络设计了一种新的 PD 诊断模型,并使用公开可用的数据集验证了其诊断效果。我们的研究还表明,肥大细胞可能在 PD 的发病和进展中发挥重要作用。
本研究采用机器学习技术开发了一种新的 PD 诊断模型,并提出免疫细胞可能是 PD 治疗的一个潜在靶点。