Suppr超能文献

机器学习能否预测反式全肩关节置换术后的前上方抬高:日常门诊的新工具?

Machine learning can predict anterior elevation after reverse total shoulder arthroplasty: A new tool for daily outpatient clinic?

机构信息

Fondazione Policlinico Universitario, Campus Bio-Medico, 00128, Roma (RM), Italia.

Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italia.

出版信息

Musculoskelet Surg. 2024 Jun;108(2):163-171. doi: 10.1007/s12306-023-00811-z. Epub 2024 Jan 24.

Abstract

The aim of the present study was to individuate and compare specific machine learning algorithms that could predict postoperative anterior elevation score after reverse shoulder arthroplasty surgery at different time points. Data from 105 patients who underwent reverse shoulder arthroplasty at the same institute have been collected with the purpose of generating algorithms which could predict the target. Twenty-eight features were extracted and applied to two different machine learning techniques: Linear regression and support vector regression (SVR). These two techniques were also compared in order to define to most faithfully predictive. Using the extracted features, the SVR algorithm resulted in a mean absolute error (MAE) of 11.6° and a classification accuracy (PCC) of 0.88 on the test-set. Linear regression, instead, resulted in a MAE of 13.0° and a PCC of 0.85 on the test-set. Our machine learning study demonstrates that machine learning could provide high predictive algorithms for anterior elevation after reverse shoulder arthroplasty. The differential analysis between the utilized techniques showed higher accuracy in prediction for the support vector regression. Level of Evidence III: Retrospective cohort comparison; Computer Modeling.

摘要

本研究的目的是确定和比较特定的机器学习算法,以预测反向肩关节置换术后不同时间点的术后前向抬高评分。从同一机构接受反向肩关节置换术的 105 名患者的数据被收集,目的是生成可以预测目标的算法。提取了 28 个特征,并应用于两种不同的机器学习技术:线性回归和支持向量回归(SVR)。为了确定最具预测性的方法,还比较了这两种技术。使用提取的特征,SVR 算法在测试集中的平均绝对误差(MAE)为 11.6°,分类准确性(PCC)为 0.88。线性回归在测试集中的 MAE 为 13.0°,PCC 为 0.85。我们的机器学习研究表明,机器学习可以为反向肩关节置换术后的前向抬高提供高预测算法。两种技术的差异分析表明,支持向量回归在预测方面具有更高的准确性。证据水平 III:回顾性队列比较;计算机建模。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验