Suppr超能文献

人工智能机器学习算法与标准线性人口统计学分析在预测解剖型和反式全肩关节置换术中假体大小的比较。

Artificial Intelligence Machine Learning Algorithms Versus Standard Linear Demographic Analysis in Predicting Implant Size of Anatomic and Reverse Total Shoulder Arthroplasty.

机构信息

From the Department of Orthopaedic Surgery and Rehabilitation, Loyola University Health System, Maywood, IL (Dr. Boubekri, Dr. Murphy, Dr. Scheidt, Mr. Shivdasani, Mr. Anderson, Dr. Garbis, and Dr. Salazar), the Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Champaign, IL (Mr. Shivdasani).

出版信息

J Am Acad Orthop Surg Glob Res Rev. 2024 Aug 1;8(8). doi: 10.5435/JAAOSGlobal-D-24-00182.

Abstract

BACKGROUND

Accurate and precise templating is paramount for anatomic total shoulder arthroplasty (TSA) and reverse total shoulder arthroplasty (RSA) to enhance preoperative planning, streamline surgery, and improve implant positioning. We aimed to evaluate the predictive potential of readily available patient demographic data in TSA and RSA implant sizing, independent of implant design.

METHODS

A total of 578 consecutive, primary, noncemented shoulder arthroplasty cases were retrospectively reviewed. Demographic variables and implant characteristics were recorded. Multivariate linear regressions were conducted to predict implant sizes using patient demographic variables.

RESULTS

Linear models accurately predict TSA implant sizes within 2 millimeters of humerus stem sizes 75.3% of the time, head diameter 82.1%, head height 82.1%, and RSA glenosphere diameter 77.6% of the time. Linear models predict glenoid implant sizes accurately 68.2% and polyethylene thickness 76.6% of the time and within one size 100% and 95.7% of the time, respectively.

CONCLUSION

Linear models accurately predict shoulder arthroplasty implant sizes from demographic data. No significant statistical differences were observed between linear models and machine learning algorithms, although the analysis was underpowered. Future sufficiently powered studies are required for more robust assessment of machine learning models in predicting primary shoulder arthroplasty implant sizes based on patient demographics.

摘要

背景

对于解剖全肩关节置换术(TSA)和反式全肩关节置换术(RSA),准确和精确的模板至关重要,这可以增强术前规划、简化手术并改善植入物定位。我们旨在评估在不考虑植入物设计的情况下,患者的一般人口统计学数据在 TSA 和 RSA 植入物尺寸中的预测潜力。

方法

回顾性分析了 578 例连续的、原发性、非骨水泥性肩关节置换病例。记录了人口统计学变量和植入物特征。使用患者的人口统计学变量进行多元线性回归以预测植入物尺寸。

结果

线性模型准确预测 TSA 植入物尺寸,在 75.3%的情况下,肱骨干尺寸的误差在 2 毫米以内;头直径的误差在 82.1%以内;头高度的误差在 82.1%以内;RSA 球窝直径的误差在 77.6%以内。线性模型准确预测关节盂植入物尺寸的概率为 68.2%,聚乙烯厚度的概率为 76.6%,并且在 100%和 95.7%的情况下分别准确预测到一个尺寸。

结论

线性模型可以根据人口统计学数据准确预测肩关节置换植入物的尺寸。线性模型和机器学习算法之间没有观察到显著的统计学差异,尽管分析的效力不足。需要进行未来有足够效力的研究,以更全面地评估基于患者人口统计学数据的机器学习模型在预测原发性肩关节置换植入物尺寸方面的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce0e/11302942/53f06feb1a3f/jagrr-8-e24.00182-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验