Suppr超能文献

来自喜马拉雅银桦的内生真菌作为植物生长促进和次生代谢产物生产的潜在来源。

Endophytic fungi from Himalayan silver birch as potential source of plant growth enhancement and secondary metabolite production.

作者信息

Dasila Khashti, Pandey Anita, Sharma Avinash, Samant Sher S, Singh Mithilesh

机构信息

Center for Environmental Assessment and Climate Change, G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, 263643, Uttarakhand, India.

Department of Biotechnology, Graphic Era (Deemed to Be University), Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India.

出版信息

Braz J Microbiol. 2024 Mar;55(1):557-570. doi: 10.1007/s42770-024-01259-4. Epub 2024 Jan 24.

Abstract

Mountain biodiversity is under unparalleled pressure due to climate change, necessitating in-depth research on high-altitude plant's microbial associations which are crucial for plant survival under stress conditions. Realizing that high-altitude tree line species of Himalaya are completely unexplored with respect to the microbial association, the present study aimed to elucidate plant growth promoting and secondary metabolite producing potential of culturable endophytic fungi of Himalayan silver birch (Betula utilis D. Don). ITS region sequencing revealed that the fungal isolates belong to Penicillium species, Pezicula radicicola, and Paraconiothyrium archidendri. These endophytes were psychrotolerant in nature with the potential to produce extracellular lytic activities. The endophytes showed plant growth promoting (PGP) traits like phosphorus solubilization and production of siderophore, indole acetic acid (IAA), and ACC deaminase. The fungal extracts also exhibited antagonistic potential against bacterial pathogens. Furthermore, the fungal extracts were found to be a potential source of bioactive compounds including the host-specific compound-betulin. Inoculation with fungal suspension improved seed germination and biomass of soybean and maize crops under net house conditions. In vitro PGP traits of the endophytes, supported by net house experiments, indicated that fungal association may support the growth and survival of the host in extreme cold conditions.

摘要

由于气候变化,山地生物多样性正面临前所未有的压力,因此有必要深入研究高海拔植物的微生物关联,这对于植物在胁迫条件下的生存至关重要。认识到喜马拉雅山高海拔树线物种的微生物关联完全未被探索,本研究旨在阐明喜马拉雅银桦(Betula utilis D. Don)可培养内生真菌促进植物生长和产生次生代谢产物的潜力。ITS区域测序显示,真菌分离物属于青霉属物种、根生盘菌(Pezicula radicicola)和树栖拟盘多毛孢(Paraconiothyrium archidendri)。这些内生菌具有耐冷性,具有产生细胞外溶解活性的潜力。内生菌表现出促进植物生长(PGP)的特性,如磷溶解以及铁载体、吲哚乙酸(IAA)和ACC脱氨酶的产生。真菌提取物还对细菌病原体表现出拮抗潜力。此外,发现真菌提取物是生物活性化合物的潜在来源,包括宿主特异性化合物桦木醇。在网室条件下,接种真菌悬浮液可提高大豆和玉米作物的种子发芽率和生物量。内生菌的体外PGP特性,在网室实验的支持下,表明真菌关联可能支持宿主在极端寒冷条件下的生长和存活。

相似文献

1
Endophytic fungi from Himalayan silver birch as potential source of plant growth enhancement and secondary metabolite production.
Braz J Microbiol. 2024 Mar;55(1):557-570. doi: 10.1007/s42770-024-01259-4. Epub 2024 Jan 24.
2
Roles of Endophytic Fungi Isolated from L. in Promoting Plant Growth.
J Microbiol Biotechnol. 2024 Sep 28;34(9):1857-1866. doi: 10.4014/jmb.2401.01034. Epub 2024 Jul 19.
4
, a Plant Species of Cold Desert in the Himalayas, Harbors Beneficial Cultivable Endophytes in Roots and Leaves.
Front Microbiol. 2021 Jul 16;12:696667. doi: 10.3389/fmicb.2021.696667. eCollection 2021.
5
Screening, Identification, and Growth Promotion of Antagonistic Endophytes Associated with Against Quinoa Pathogens.
Phytopathology. 2023 Oct;113(10):1839-1852. doi: 10.1094/PHYTO-11-22-0419-R. Epub 2023 Nov 10.
7
Culturable endophytic bacteria of Camellia species endowed with plant growth promoting characteristics.
J Appl Microbiol. 2019 Sep;127(3):825-844. doi: 10.1111/jam.14356. Epub 2019 Jul 10.
10
Bioprospecting plant growth promoting endophytic bacteria isolated from Himalayan yew (Taxus wallichiana Zucc.).
Microbiol Res. 2020 Oct;239:126536. doi: 10.1016/j.micres.2020.126536. Epub 2020 Jun 27.

引用本文的文献

1
Needle in a Haystack: Culturing Plant-Beneficial Helotiales Lineages From Plant Roots.
Environ Microbiol. 2025 Apr;27(4):e70082. doi: 10.1111/1462-2920.70082.

本文引用的文献

1
Fungal Guttation, a Source of Bioactive Compounds, and Its Ecological Role-A Review.
Biomolecules. 2021 Aug 25;11(9):1270. doi: 10.3390/biom11091270.
2
MEGA11: Molecular Evolutionary Genetics Analysis Version 11.
Mol Biol Evol. 2021 Jun 25;38(7):3022-3027. doi: 10.1093/molbev/msab120.
4
Natural Holobiome Engineering by Using Native Extreme Microbiome to Counteract the Climate Change Effects.
Front Bioeng Biotechnol. 2020 Jun 4;8:568. doi: 10.3389/fbioe.2020.00568. eCollection 2020.
5
Isolation, characterization, and plant growth-promoting activities of endophytic fungi from a wild orchid .
Plant Signal Behav. 2020 May 3;15(5):1744294. doi: 10.1080/15592324.2020.1744294. Epub 2020 Mar 25.
6
The Multiple Facets of Plant-Fungal Interactions Revealed Through Plant and Fungal Secretomics.
Front Plant Sci. 2020 Jan 8;10:1626. doi: 10.3389/fpls.2019.01626. eCollection 2019.
7
Melanin and pyomelanin in Aspergillus fumigatus: from its genetics to host interaction.
Int Microbiol. 2020 Jan;23(1):55-63. doi: 10.1007/s10123-019-00078-0. Epub 2019 Apr 24.
8
Living strategy of cold-adapted fungi with the reference to several representative species.
Mycology. 2017 Aug 30;8(3):178-188. doi: 10.1080/21501203.2017.1370429. eCollection 2017.
9
Subsaxibacter sediminis sp. nov., isolated from Arctic glacial sediment and emended description of the genus Subsaxibacter.
Int J Syst Evol Microbiol. 2018 May;68(5):1678-1682. doi: 10.1099/ijsem.0.002729. Epub 2018 Mar 21.
10
Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of L.
J Adv Res. 2017 Nov;8(6):687-695. doi: 10.1016/j.jare.2017.09.001. Epub 2017 Sep 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验