Kang Wanying
Earth, Atmospheric and Planetary Science Department, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.
Sci Adv. 2024 Jan 26;10(4):eadk2277. doi: 10.1126/sciadv.adk2277. Epub 2024 Jan 24.
The ice shells of icy satellites have been hypothesized to undergo nonsynchronous rotation (NSR) under the influence of tidal torques and/or ocean currents. In this work, the author proposes that the thermal wind relationship can be combined with geostrophic turbulence theory to predict ocean stress onto the ice shell inside the tangent cylinder. High-resolution numerical simulations validate the prediction within a factor of 2. For the prediction to be valid, the rotation effect must dominate (Rossby number < 1), and the upper ocean should be stratified. The latter can be achieved with sufficiently large ice thickness variations [the threshold for Europa is O(100) m]. Using this framework, once the ice rheology, thickness variations and NSR rate are determined, one may be able to estimate the ocean overturn timescale and put constraints on the ocean vertical diffusivity or the heat flux originating from the silicate core.
据推测,在潮汐扭矩和/或洋流的影响下,冰卫星的冰壳会发生非同步自转(NSR)。在这项研究中,作者提出热成风关系可以与地转湍流理论相结合,以预测切线圆柱体内海洋对冰壳的应力。高分辨率数值模拟验证了预测结果,误差在2倍以内。为使预测有效,旋转效应必须占主导(罗斯比数<1),且上层海洋应呈分层状态。后者可以通过足够大的冰厚度变化来实现(木卫二的阈值为O(100)米)。利用这一框架,一旦确定了冰流变学、厚度变化和NSR速率,就可以估计海洋翻转时间尺度,并对海洋垂直扩散率或来自硅酸盐核心的热通量施加限制。